Binarization of degraded document images based on contrast enhancement

Original Paper
  • 24 Downloads

Abstract

Because of the different types of document degradation such as uneven illumination, image contrast variation, blur caused by humidity, and bleed-through, degraded document image binarization is still an enormous challenge. This paper presents a new binarization method for degraded document images. The proposed algorithm focuses on the differences of image grayscale contrast in different areas. Quadtree is used to divide areas adaptively. In addition, various contrast enhancements are selected to adjust local grayscale contrast in areas with different contrasts. Finally, the local threshold is regarded as the mean of foreground and background gray values, which are determined by the frequency of the gray values. The proposed algorithm was tested on the datasets from the Document Image Binarization Contest (DIBCO) (DIBCO 2009, H-DIBCO 2010, DIBCO 2011, and H-DIBCO 2012). Compared with five other classical algorithms, the images binarized using the proposed algorithm achieved the highest F-measure and peak signal-to-noise ratio and obtained the highest correct rate of recognition.

Keywords

Degraded document Binarization Quadtree Contrast enhancement Local threshold Document image analysis 

References

  1. 1.
  2. 2.
    Wen, J., Li, S., Sun, J.: A new binarization method for non-uniform illuminated document images. Pattern Recognit. 46, 1670–1690 (2012)CrossRefGoogle Scholar
  3. 3.
    Cheng, H.D., Chen, Y.H.: Fuzzy partition of two-dimensional histogram and its application to thresholding. Pattern Recognit. 32(5), 825–843 (1999)CrossRefGoogle Scholar
  4. 4.
    Cinque, L., Di Zenzo, S., Levialdi, S.: Image thresholding using fuzzy entropies. IEEE Trans. SMC 28(1), 2–15 (1998)Google Scholar
  5. 5.
    Papamarkos, N.: A technique for fuzzy document binarization. In: Proceedings of the 2001 ACM Symposium on Document Engineering, Atlanta, Georgia, USA, ACM, pp. 152–156 (2001)Google Scholar
  6. 6.
    Chou, C.H., Lin, W.H., Chang, F.: A binarization method withl earning-built rules for document images produced by cameras. Pattern Recognit. 43, 1518–1530 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Mesquita*, R.G. , Mello , C.A.B., Almeida,L.H.E.V.: A new thresholding algorithm for document images based on the perception of objects by distance. Integr. Comput.-Aided Eng. 21, 133–146 (2014)Google Scholar
  8. 8.
    Otsu, N.: A threshold selectionmethod from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  9. 9.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for graylevel picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 29, 273–285 (1985)CrossRefGoogle Scholar
  10. 10.
    Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognit. 19(1), 41–47 (1986)CrossRefGoogle Scholar
  11. 11.
    Abutaleb, A.S.: Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Process. 47, 22–32 (1989)CrossRefGoogle Scholar
  12. 12.
    Bernsen, J.: Dynamic thresholding of grey-level images. In: Proceedings of ICPR’86, pp. 1251–1255 (1986)Google Scholar
  13. 13.
    Niblack, W.: An Introduction to Digital Image Processing, pp. 115–116. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  14. 14.
    Sauvola, J., Pietikainen, M.: Adaptive document image binarization. Pattern Recognit. 33, 225–236 (2000)CrossRefGoogle Scholar
  15. 15.
    Kim, I.K., Jung, D.W., Park, R.H.: Document image binarization based on topographic analysis using a water flow model. Pattern Recognit. 35, 265–277 (2002)CrossRefMATHGoogle Scholar
  16. 16.
    Valizadeh, M., Komeili, M., Armanfard, N., Kabir, E.: Degraded document image binarization based on combination of two complementary algorithms. In: Proceedings of ICACTEA’09, IEEE, pp. 595–599 (2009)Google Scholar
  17. 17.
    Pai, Y.T., Pai, Y.F., Ruan, S.J.: Adaptive thresholding algorithm: efficient computation technique based on intelligent block detection for degraded document images. Pattern Recognit. 9, 3177–3187 (2010)CrossRefMATHGoogle Scholar
  18. 18.
    Singh, B.M., Sharma, R., Ghosh, D., Mittal, A.: Adaptive binarization of severely degraded and non-uniformly illuminated documents. Proc. Int. J. Doc. Anal. Recognit. (IJDAR) 17(4), 393–412 (2014)CrossRefGoogle Scholar
  19. 19.
    Gatos, B., Pratikakis, I., Perantonis, S.J.: Adaptive degraded document image binarization. Pattern Recognit. 39, 317–327 (2006)CrossRefMATHGoogle Scholar
  20. 20.
    Rosenfeld, A., Kak, A.C.: Digital Picture Processing, 2nd edn. Academic Press, New York (1982)MATHGoogle Scholar
  21. 21.
    Users. iit. demokritos. gr/ bgat/ DIBCO 2009/ benchmark/Google Scholar
  22. 22.
    Users. iit. demokritos. gr/ bgat/ H-DIBCO 2010/ benchmark/Google Scholar
  23. 23.
    Utopia. duth. gr/ ipratika/ DIBCO 2011/ benchmark/Google Scholar
  24. 24.
    Utopia. duth. gr/ ipratika/ HDIBCO 2012/ benchmark/Google Scholar
  25. 25.
    Pratikakis, I., Gatos, B.,Ntirogiannis, K.: ICFHR2012 competition on handwritten document image binarization (H-DIBCO 2012). In: 2012 International Conference on Frontiers in Handwriting Recognition(ICFHR), pp. 813–818 (2012)Google Scholar
  26. 26.
  27. 27.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harbin University of Science and TechnologyHarbinChina

Personalised recommendations