Word searching in unconstrained layout using character pair coding

Abstract

Word searching in non-structural layout such as graphical documents is a difficult task due to arbitrary orientations of text words and the presence of graphical symbols. This paper presents an efficient approach for word searching in documents of non-structural layout using an efficient indexing and retrieval approach. The proposed indexing scheme stores spatial information of text characters of a document using a character spatial feature table (CSFT). The spatial feature of text component is derived from the neighbor component information. The character labeling of a multi-scaled and multi-oriented component is performed using support vector machines. For searching purpose, the positional information of characters is obtained from the query string by splitting it into possible combinations of character pairs. Each of these character pairs searches the position of corresponding text in document with the help of CSFT. Next, the searched text components are joined and formed into sequence by spatial information matching. String matching algorithm is performed to match the query word with the character pair sequence in documents. The experimental results are presented on two different datasets of graphical documents: maps dataset and seal/logo image dataset. The results show that the method is efficient to search query word from unconstrained document layouts of arbitrary orientation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Mantas, J.: An overview of character recognition methodologies. Pattern Recognit. 19(6), 425–430 (1986)

    Article  Google Scholar 

  2. 2.

    Roy, P.P., Pal, U., Lladós, J.: Query driven word retrieval in graphical documents. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, Boston, USA, pp. 191–198 (2010)

  3. 3.

    Liu, W., Lladós, J. (eds.): Graphics Recognition. Ten Years Review and Future Perspectives. Springer, Berlin (2006)

    Google Scholar 

  4. 4.

    Roy, P.P., Pal, U., Lladós, J.: Document seal detection using GHT and character proximity graphs. Pattern Recognit. 44, 1282–1295 (2011)

    Article  Google Scholar 

  5. 5.

    Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)

    Article  Google Scholar 

  6. 6.

    Deseilligny, M.P., Men, H.L., Stamon, G.: Character string recognition on maps, a rotation-invariant recognition method. Pattern Recognit. Lett. 16(12), 1297–1310 (1995)

    Article  Google Scholar 

  7. 7.

    Adam, S., Ogier, J.M., Carlon, C., Mullot, R., Labiche, J., Gardes, J.: Symbol and character recognition: application to engineering drawing. Int. J. Doc. Anal. Recognit. 3, 89–101 (2000)

    Article  Google Scholar 

  8. 8.

    Pal, U., Roy, P.P., Tripathy, N., Llados, J.: Multi-oriented Bangla and Devnagari text recognition. Pattern Recognit. 43, 4124–4136 (2010)

    Article  MATH  Google Scholar 

  9. 9.

    Nakayama, T.: Modeling content identification from document images. In: Fourth Confernce on Applied Natural Language Processing, pp. 22–27 (1994)

  10. 10.

    Lu, S., Linlin, L., Tan, C.L.: Document image retrieval through word shape coding. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1913–1918 (2008)

    Article  Google Scholar 

  11. 11.

    Williams, W.J., Zalubas, E., Hero, A.O.: Word spotting in bitmapped fax documents. Inf. Retr. 2, 207–226 (2000)

    Article  Google Scholar 

  12. 12.

    Rath, T., Manmatha, R.: Word spotting for historical documents. Int. J. Doc. Anal. Recognit. 9, 139–152 (2005)

    Article  Google Scholar 

  13. 13.

    Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., Perantonis, S.J.: Keyword-guided word spotting in historical printed documents using synthetic data and user feedback. Int. J. Doc. Anal. Recognit. 9, 167–177 (2007)

    Article  Google Scholar 

  14. 14.

    Gatos, B., Pratikakis, I.: Segmentation-free word spotting in historical printed documents. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 271–275 (2009)

  15. 15.

    Takasu, A.: Document filtering for fast approximate string matching of errorneous text. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 916–920 (2001)

  16. 16.

    Tombre, K., Tabbone, S., Peissier, L., Lamiroy, B., Dosch, P.: Text /graphics separation revisited. In: Proceedings of IAPR Workshop on Document Analysis Systems, pp. 200–211 (2002)

  17. 17.

    Luo, H., Agam, G., Dinstein, I.: Directional mathematical morphology approach for line thinning and extraction of character strings from maps and line drawings. In: Proceedings of International Conference on Document Analysis and Recognition, Vol. 1, pp. 257–261 (1995)

  18. 18.

    Tan, C.L., Ng, P.O.: Text extraction using pyramid. Pattern Recognit. 31(1), 63–72 (1998)

    Article  Google Scholar 

  19. 19.

    Cao, R., Tan, C.: Text/graphics separation in maps. In: Proceedings of GREC, Canada, pp. 44–48 (2001)

  20. 20.

    Goto, H., Aso, H.: Extracting curved lines using local linearity of the text line. Int. J. Doc. Anal. Recognit. 2, 111–118 (1999)

    Article  Google Scholar 

  21. 21.

    Loo, P. K., Tan, C.L.: Word and sentence extraction using irregular pyramid. In: Proceedings of IAPR Workshop on Document Analysis Systems, pp. 307–318 (2002)

  22. 22.

    Roy, P.P., Pal, U., Lladós, J.: Text line extraction in graphical documents using background and foreground information. Int. J. Doc. Anal. Recognit. 15, 227–241 (2012)

    Article  Google Scholar 

  23. 23.

    Gatos, B., Pratikakis, I., Ntirogiannis, K.: Segmentation based recovery of arbitrarily warped document images. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 989–993 (2007)

  24. 24.

    Bai, N.N., Nam, K., Song, Y.: Extracting curved text lines using the chain composition and the expanded grouping method. In: Document Recognition and Retrieval, USA (2008)

  25. 25.

    Hase, H., Shinokawa, T., Yoneda, M., Suen, C.Y.: Recognition of rotated characters by eigen-space. In: Proceedings of International Conference on Document Analysis and Recognition, pp. 731–735 (2003)

  26. 26.

    Yang, T.N., Wang, S.D.: A rotation invariant printed chinese character recognition system source. Pattern Recognit. Lett. 22, 85–95 (2001)

    Article  MATH  Google Scholar 

  27. 27.

    Hayashi, T., Takagi, N.: A consideration on rotation invariant character recognition. In: World Automation Congress, pp. 1–6 (2006)

  28. 28.

    Monwar, M., Haque, W., Paul, P.P.: A new approach for rotation invariant optical character recognition using eigen digit. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, pp. 1317–1320 (2007)

  29. 29.

    Iwamura, M., Tsuji, T., Horimatsu, A., Kise, K.: Real-time camera-based recognition of characters and pictograms. In: Proceedings of International Conference on Document Analysis and Recognition, Spain, pp. 76–80 (2009)

  30. 30.

    Roy, P.P., Pal, U., Lladós, J., Delalandre, M.: Multi-oriented and multi-sized touching character segmentation using dynamic programming. In: Proceedings of International Conference on Document Analysis and Recognition, Barcelona, Spain, pp. 11–15 (2009)

  31. 31.

    Hall, P.A.V., Dowling, G.R.: Approximate string matching. ACM Comput. Surv. 12, 381–402 (1980)

    Article  MathSciNet  Google Scholar 

  32. 32.

    Liu, H., Lu, Y., Wu, Q., Zha, H.: Automatic seal image retrieval method by using shape features of chinese characters. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2871–2876 (2007)

  33. 33.

    Huet, B., Hancock, E.R.: Relational object recognition from large structural libraries. Pattern Recognit. 35, 1895–1915 (2002)

    Article  MATH  Google Scholar 

  34. 34.

    Delalandre, M., Pridmore, T., Valveny, E., Locteau, H., Trupin, E.: Building synthetic graphical documents for performance evaluation, Revised Selected Papers of Workshop on Graphics Recognition (GREC). Lecture Notes in Computer Science (LNCS) 5046, pp. 288–298 (2008)

  35. 35.

    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  36. 36.

    Roy, K., Pal, U., Chaudhuri, B.B.: A system for joining and recognition of broken bangla numerals for Indian postal automation. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 641–646 (2004)

  37. 37.

    Roy, P.P., Lladós, J., Pal, U.: A complete system for detection and recognition of text in graphical documents using background information. In: International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, pp. 209–216 (2009)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Roy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, P.P., Pal, U. & Lladós, J. Word searching in unconstrained layout using character pair coding. IJDAR 17, 343–358 (2014). https://doi.org/10.1007/s10032-014-0227-6

Download citation

Keywords

  • Graphical document analysis
  • Graphics recognition
  • Information retrieval
  • Word spotting
  • Multi-Oriented text recognition