Statistical segmentation and structural recognition for floor plan interpretation

Notation invariant structural element recognition

Abstract

A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    In Germany, a DIN-standard exists (DIN 1356-1), but is rarely used. Furthermore, standards vary from country to country and often even from one architecture company to another. Depending on the visual appealing, the architects within the same office decide to use different representation.

  2. 2.

    http://jgrapht.org/.

  3. 3.

    In the rest of this section, all the process explained for door detection is also valid for window detection. However, we will only refer to doors for clarity and to avoid unnecessary repetitions.

  4. 4.

    http://www.cvc.uab.es/floorplans.

References

  1. 1.

    Ah-soon, C., Tombre, K.: Variations on the analysis of architectural drawings. In: Proceedings of Fourth International Conference on Document Analysis and Recognition, pp. 347–351 (1997)

  2. 2.

    Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved automatic analysis of architectural floor plans. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 864–869 (2011)

  3. 3.

    Ahmed, S., Liwicki, M., Weber, M., Dengel., A.: Automatic room detection and room labeling from architectural floor plans. In: Proceedings of the IAPR International Workshop on Document Analysis Systems, pp. 339–343. IEEE (2012)

  4. 4.

    Ahmed, S., Weber, M., Liwicki, M., Langenhan, C., Dengel, A., Petzold, F.: Automatic analysis and sketch-based retrieval of architectural floor plans. Pattern Recognition Letters (pre-print) (2013)

  5. 5.

    Aoki, Y., Shio, A., Arai, H., Odaka, K.: A prototype system for interpreting hand-sketched floor plans. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 3, pp. 747–751 (1996)

  6. 6.

    Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Proceedings of the European Conference on Computer Vision, pp. 404–417 (2006)

  7. 7.

    Boumaiza, A., Tabbone, S.: Impact of a codebook filtering step on a galois lattice structure for graphics recognition. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 278–281 (2012)

  8. 8.

    Cherneff, J., Logcher, R., Connor, J., Patrikalakis, N.: Knowledge-based interpretation of architectural drawings. Res. Eng. Des. 3, 195–210 (1992)

    Article  Google Scholar 

  9. 9.

    Dosch, P., Masini, G.: Reconstruction of the 3d structure of a building from the 2d drawings of its floors. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 487–490 (1999)

  10. 10.

    Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for the analysis of architectural drawings. Int. J. Doc. Anal. Recogn. 3, 102–116 (2000)

    Article  Google Scholar 

  11. 11.

    Dutta, A., Lladós, J., Pal, U.: Symbol spotting in line drawings through graph paths hashing. In: Proceedings of the 11th International Conference on Document Analysis and Recognition, pp. 982–986 (2011)

  12. 12.

    de las Heras, L.P., Fernández, D., Valveny, E., Lladós, J., Sánchez, G.: Unsupervised wall detector in architectural floorplans. In: Proceedings of the 12th International Conference on Document Analysis and Recognition, pp. 1277–1281 (2013)

  13. 13.

    de las Heras, L.P., Mas, J., Sánchez, G., Valveny, E.: Wall patch-based segmentation in architectural floorplans. In: Proceedings of the 11th International Conference on Document Analysis and Recognition, pp. 1270–1274 (2011)

  14. 14.

    de las Heras, L.P., Mas, J., Sánchez, G., Valveny, E.: Notation-invariant patch-based wall detector in architectural floor plans. In: Graphic Recognition, Lecture Notes in Computer Science, vol. 7423, pp. 79–88 (2012)

  15. 15.

    de las Heras, L.P., Sánchez, G.: And-or graph grammar for architectural floorplan representation, learning and recognition. a semantic, structural and hierarchical model. In: Proceedings of the 5th Iberian Conference on Pattern Recognition and Image Analysis, vol. 6669, pp. 17–24 (2011)

  16. 16.

    de las Heras, L.P., Valveny, E., Sánchez, G.: Combining structural and statistical strategies for unsupervised wall detection in floor plans. In: Proceedings of the 10th IAPR International Workshop on Graphics Recognition, pp. 123–128 (2013)

  17. 17.

    Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings of the 20th International Conference on Machine Learning, pp. 147–153 (2003)

  18. 18.

    Escalera, S., Fornes, A., Pujol, O., Escudero, A., Radeva, P.: Circular blurred shape model for symbol spotting in documents. In: Proceedings of the 26th IEEE International Conference on Image Processing, pp. 2005–2008 (2009)

  19. 19.

    Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

    Article  Google Scholar 

  20. 20.

    Hori, O., Tanigawa, S.: Raster-to-vector conversion by line fitting based on contours and skeletons. In: Proceedings of the Second International Conference on Document Analysis and Recognition, pp. 353–358 (1993)

  21. 21.

    Jiang, X., Bunke, H.: An optimal algorithm for extracting the regions of a plane graph. Pattern Recogn. Lett. 14(7), 553–558 (1993)

    Article  MATH  Google Scholar 

  22. 22.

    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Google Scholar 

  23. 23.

    Lladós, J., López-Krahe, J., Martí, E.: A system to understand hand-drawn floor plans using subgraph isomorphism and hough transform. Mach. Vis. Appl. 10, 150–158 (1997)

    Article  Google Scholar 

  24. 24.

    Lladós, J., Sánchez, G., Martí, E.: A string based method to recognize symbols and structural textures in architectural plans. In: Graphics Recognition Algorithms and Systems, Lecture Notes in Computer Science, vol. 1389, pp. 91–103. Springer, Berlin (1998)

  25. 25.

    Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

  26. 26.

    Lu, T., Yang, H., Yang, R., Cai, S.: Automatic analysis and integration of architectural drawings. Int. J. Doc. Anal. Recogn. 9, 31–47 (2007)

    Article  Google Scholar 

  27. 27.

    Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A system to detect rooms in architectural floor plan images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, DAS ’10, pp. 167–174 (2010)

  28. 28.

    Or, S.H., Wong, K.H., Yu, Y.K., Chang, M.M.Y.: Highly automatic approach to architectural floorplan image understanding & model generation. iN: Proceedings of the Vision, Modeling, and Visualization, pp. 25–32 (2005)

  29. 29.

    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  30. 30.

    Phillips, I., Chhabra, A.: Empirical performance evaluation of graphics recognition systems. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 849–870 (1999)

    Google Scholar 

  31. 31.

    Rendek, J., Masini, G., Dosch, P., Tombre, K.: The search for genericity in graphics recognition applications: design issues of the qgar software system. In: Document Analysis Systems VI. Lecture Notes in Computer Science, vol. 3163, pp. 366–377 (2004)

  32. 32.

    Ryall, K., Shieber, S., Marks, J., Mazer, M.: Semi-automatic delineation of regions in floor plans. In: Proceedings of the Third International Conference on Document Analysis and Recognition, pp. 964–983 (1995)

  33. 33.

    Santosh, K., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recogn. (IJDAR), 1–18 (2013)

  34. 34.

    Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: Document Analysis Systems V, Lecture Notes in Computer Science, pp. 615–620 (2002)

  35. 35.

    Weber, M., Liwicki, M., Dengel, A.: a.Scatch—a sketch-based retrieval for architectural floor plans. In: Proceedings of the 12th International Conference on Frontiers of Handwriting Recognition, pp. 289–294 (2010)

  36. 36.

    Wessel, R., Blümel, I., Klein, R.: The room connectivity graph: shape retrieval in the architectural domain. In: Proceedings of the 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (2008)

  37. 37.

    Zhi, G., Lo, S., Fang, Z.: A graph-based algorithm for extracting units and loops from architectural floor plans for a building evacuation model. Comput. Aided Des. 35(1), 1–14 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish projects TIN2009-14633-C03-03 and TIN2011-24631, and by the research grant of the Universitat Autònoma de Barcelona (471-02-1/2010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lluís-Pere de las Heras.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de las Heras, LP., Ahmed, S., Liwicki, M. et al. Statistical segmentation and structural recognition for floor plan interpretation. IJDAR 17, 221–237 (2014). https://doi.org/10.1007/s10032-013-0215-2

Download citation

Keywords

  • Ground Truth
  • Jaccard Index
  • Floor Plan
  • Graphical Notation
  • Wall Image