Nonlinear model identification and see-through cancelation from recto–verso data

  • Emanuele SalernoEmail author
  • Francesca Martinelli
  • Anna Tonazzini
Original Paper


The problem of see-through cancelation in digital images of double-sided documents is addressed. We show that a nonlinear convolutional data model proposed elsewhere for moderate show-through can also be effective on strong back-to-front interferences, provided that the recto and verso pure patterns are estimated jointly. To this end, we propose a restoration algorithm that does not need any classification of the pixels. The see-through PSFs are estimated off-line, and an iterative procedure is then employed for a joint estimation of the pure patterns. This simple and fast algorithm can be used on both grayscale and color images and has proved to be very effective in real-world cases. The experimental results we report in this paper demonstrate that our algorithm outperforms the ones based on linear models with no need to tune free parameters and remains computationally inexpensive despite the nonlinear model and the iterative solution adopted. Strategies to overcome some of the residual difficulties are also envisaged.


Document image processing See-through cancelation Nonlinear image models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida L.B.: Separating a real-life nonlinear image mixture. J. Mach. Learn. Res. 6, 1199–1230 (2005)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Almeida, M.S.C., Almeida, L.B.: Separating nonlinear image mixtures using a physical model trained with ICA. IEEE Intl. Workshop on Machine Learning for Signal Processing, Maynooth, Ireland (2006)Google Scholar
  3. 3.
    Almeida M.S.C., Almeida L.B.: Wavelet-based separation of nonlinear show-through and bleed-through image mixtures. Neurocomputing 72, 57–70 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andrews H.C., Hunt B.R.: Digital Image Restoration. Prentice Hall, Englewood Cliffs, NJ (1977)Google Scholar
  5. 5.
    Deville Y., Hosseini S.: Recurrent networks for separating extractable-target nonlinear mixtures. Part I: Non-blind configurations. Signal Process. 89, 378–393 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Honkela, A.: Advances in variational Bayesian nonlinear blind source separation. PhD dissertation, Helsinki University of Technology, Report D10 (2005)Google Scholar
  7. 7.
    Hyvärinen A., Pajunen P.: Nonlinear independent component analysis. Neural Networks 12, 429–439 (1999)CrossRefGoogle Scholar
  8. 8.
    Hyvärinen A., Karhunen J., Oja E.: Independent Component Analysis. Wiley, New York, NY (2001)CrossRefGoogle Scholar
  9. 9.
    Luenberger D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading, MA (1984)zbMATHGoogle Scholar
  10. 10.
    Martinelli F., Salerno E., Gerace I., Tonazzini A.: Non-linear model and constrained ML for removing back-to-front interferences from recto-verso documents. Pattern Recogn. 45, 596–605 (2012)CrossRefGoogle Scholar
  11. 11.
    Merrikh-Bayat F., Babaie-Zadeh M., Jutten C.: Linear-quadratic blind source separating structure for removing show-through in scanned documents. IJDAR 14, 319–333 (2011)CrossRefGoogle Scholar
  12. 12.
    Merrikh-Bayat, F., Babaie-Zadeh, M., Jutten, C.: Using non-negative matrix factorization for removing show-through. Proc. LVA-ICA, Saint Malo, France (2010)Google Scholar
  13. 13.
    Moghaddam R.F., Cheriet M.: Low-quality document image modeling and enhancement. IJDAR 11, 183–201 (2009)CrossRefGoogle Scholar
  14. 14.
    Ophir, B., Malah, D.: Show-through cancellation in scanned images using blind source separation techniques. Proc. IEEE-ICIP 2007 III, pp. 233–236 (2007)Google Scholar
  15. 15.
    Sharma G.: Show-through cancellation in scans of duplex printed documents. IEEE Trans. Image Process. 10, 736–754 (2001)CrossRefGoogle Scholar
  16. 16.
    Tonazzini A., Bedini L., Salerno E.: Independent component analysis for document restoration. IJDAR 7, 17–27 (2004)CrossRefGoogle Scholar
  17. 17.
    Tonazzini A., Salerno E., Mochi M., Bedini L.: Bleed-through removal from degraded documents using a color decorrelation method. Lecture Notes Comput. Sci. 3163, 229–240 (2004)CrossRefGoogle Scholar
  18. 18.
    Tonazzini A., Salerno E., Bedini L.: Fast correction of bleed-through distortion in grayscale documents by a blind source separation technique. IJDAR 10, 17–25 (2007)CrossRefGoogle Scholar
  19. 19.
    Tonazzini, A., Bianco, G., Salerno, E.: Registration and enhancement of double-sided degraded manuscripts acquired in multispectral modality. Proc. IEEE-ICDAR 2009, pp. 546–550 (2009)Google Scholar
  20. 20.
    Tonazzini A., Gerace I., Martinelli F.: Multichannel blind separation and deconvolution of images for document analysis. IEEE Trans. Image Process. 19, 912–925 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, Q., Tan, C.L.: Matching of double-sided document images to remove interference. In: Proceedings of IEEE-CVPR 2001, vol. 1, pp. 1084–1089 (2001)Google Scholar
  22. 22.
    Wang, Q., Xia, T., Li, L., Tan, C.L.: Document image enhancement using directional wavelet. In: Proceedings of IEEE-CVPR 2003, vol. 2, pp. 534–539 (2003)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Emanuele Salerno
    • 1
    Email author
  • Francesca Martinelli
    • 1
  • Anna Tonazzini
    • 1
  1. 1.CNR, Istituto di Scienza e Tecnologie dell’Informazione, National Research Council of ItalyPisaItaly

Personalised recommendations