Advertisement

Text-line examination for document forgery detection

  • Joost van BeusekomEmail author
  • Faisal Shafait
  • Thomas M. Breuel
Original Paper

Abstract

In this paper, an approach for forgery detection using text-line information is presented. In questioned document examination, text-line rotation and alignment can be important clues for detecting tampered documents. Measuring and detecting such mis-rotations and mis-alignments are a cumbersome task. Therefore, an automated approach for verification of documents based on these two text-line features is proposed in this paper. An in-depth evaluation of the proposed methods shows its usefulness in the context of document security with an area under the ROC curve (AUC) score of AUC=0.89. The automatic nature of the approach allows the presented methods to be used in high-volume environments.

Keywords

Document security Text-line alignment Text-line orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindblom B.S., Gervais R.: Scientific Examination of Ques- tioned Documents, pp. 238–241. Taylor and Francis, Boca Raton, FL (2006)Google Scholar
  2. 2.
    Smith, P.J., O’Doherty, P., Luna, C., McCarthy, S.: Commercial anticounterfeit products using machine vision. In: Proceedings of SPIE Optical Security and Counterfeit Deterrence Techniques V, vol. 5310, pp. 237–243. San Jose, CA, USA (2004)Google Scholar
  3. 3.
    Amidror, I.: A new print-based security strategy for the protection of valuable documents and products using moire intensity profiles. In: Proceedings of SPIE Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677, pp. 89–100. San Jose, CA, USA (2002)Google Scholar
  4. 4.
    Hampp, N.A., Neebe, M., Juchem T., Wolperdinger M., Geiger M., Schmuck A.: Multifunctional optical security features based on bacteriorhodopsin. In: Proceedings of SPIE Optical Security and Counterfeit Deterrence Techniques V, vol. 5310, pp. 117–124. San Jose, CA, USA (2004)Google Scholar
  5. 5.
    van Renesse, R.: Ordering the order, a survey of optical document security features. In: Proceedings of SPIE Conference on Practical Holography IX, pp. 268–275. San Jose, CA, USA (1995)Google Scholar
  6. 6.
    van Renesse, R.: Protection of high security documents—developments in holography to secure the future market and serve the public. In: Proceedings of Holo-Pack, Holo-Print, Vienna, Austria (2006)Google Scholar
  7. 7.
    van Renesse, R.: Hidden and scambled images—a review. In: Proceedings of SPIE Optical Security and Counterfeit Deterrence Techniques IV, vol. 4677, pp. 333–348. San Jose, CA, USA (2002)Google Scholar
  8. 8.
    Ali, G.N., Chiang, P.-J., Mikkilineni, A.K., Allebach, J.P., Chiu, G.T.C., Delp, E.J.: Intrinsic and extrinsic signatures for information hiding and secure printing with electrophotographic devices. In: Proceedings of the International Conference on Digital Printing Technologies, pp. 511–515. New Orleans, LA, USA (2003)Google Scholar
  9. 9.
    Mikkilineni, A.K., Chiang, P.-J., Ali, G.N., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Printer identification based on graylevel co-occurrence features for security and forensic applications. In: Proceedings of SPIE Security, Steganography, and Watermarking of Multimedia Contents VII, vol. 5681, pp. 430–440. San Jose, CA, USA (2005)Google Scholar
  10. 10.
    Khanna, N., Mikkilineni, A.K., Chiu, G.T.C., Allebach, J.P., Delp, E.J.: Survey of scanner and printer forensics at purdue university. In: Proceedings of the 2nd International Workshop on Computational Forensics. Lecture Notes in Computer Science, vol. 5158, pp. 22–34. Washington, DC, USA (2008)Google Scholar
  11. 11.
    Schulze, C., Schreyer, M., Stahl, A., Breuel, T.M.: Evaluation of graylevel-features for printing technique classification in high-throughput document management systems. In: Proceedings of the 2nd International Workshop on Computational Forensics. Lecture Notes in Computer Science, vol. 5158, pp. 35–46. Washington, DC, USA (2008)Google Scholar
  12. 12.
    Schreyer, M.: Intelligent printing technique recognition and photocopy detection for forensic document examination. In: Proceedings of Informatiktage 2009, vol. S-8, pp. 39–42. Bonn, Germany (2009)Google Scholar
  13. 13.
    Schulze, C., Schreyer, M., Stahl, A., Breuel, T.M.: Using DCT features for printing technique and copy detection. In: Proceedings of the 5th International Conference on Digital Forensics, pp. 95–106. Orlando, FL, USA (2009)Google Scholar
  14. 14.
    Breuel, T.M.: Robust least square baseline finding using a branch and bound algorithm. In: Proceedings of SPIE Document Recognition and Retrieval IX, pp. 20–27. San Jose, CA, USA (2002)Google Scholar
  15. 15.
    Shafait F., Keysers D., Breuel T.M.: Performance evaluation and benchmarking of six page segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 941–954 (2008)CrossRefGoogle Scholar
  16. 16.
    van Beusekom J., Shafait F., Breuel T.M.: Combined orientation and skew detection using geometric text-line modeling. Int. J. Doc. Anal. Recognit. 13(2), 79–92 (2010)CrossRefGoogle Scholar
  17. 17.
    Kanungo T., Haralick R.M.: An automatic closed-loop methodology for generating character groundtruth for scanned documents. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 179–183 (1999)CrossRefGoogle Scholar
  18. 18.
    Breuel T.M.: On the use of interval arithmetic in geometric branch-and-bound algorithms. Pattern Recognit. Lett. 24(9–10), 1375–1384 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Duda, R.O., Hart, P. E., Stork, D. G.: Pattern Classification, p. 49. Wiley, New York (2001)Google Scholar
  20. 20.
    van Beusekom, J., Shafait, F., Breuel, T.M.: Document signature using intrinsic features for counterfeit detection. In: Proceedings of the 2nd International Workshop on Computational Forensics. Lecture Notes in Computer Science, vol. 5158, pp. 47–57. Washing-ton, DC, USA (2008)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Joost van Beusekom
    • 1
    • 2
    Email author
  • Faisal Shafait
    • 2
  • Thomas M. Breuel
    • 1
  1. 1.Department of Computer ScienceUniversity of Kaiserslautern, Image Understanding and Pattern Recognition GroupKaiserslauternGermany
  2. 2.German Research Center for Artificial Intelligence (DFKI)KaiserslauternGermany

Personalised recommendations