Multi-feature extraction and selection in writer-independent off-line signature verification

  • Dominique Rivard
  • Eric GrangerEmail author
  • Robert Sabourin
Original Paper


Some of the fundamental problems faced in the design of signature verification (SV) systems include the potentially large number of input features and users, the limited number of reference signatures for training, the high intra-personal variability among signatures, and the lack of forgeries as counterexamples. In this paper, a new approach for feature selection is proposed for writer-independent (WI) off-line SV. First, one or more preexisting techniques are employed to extract features at different scales. Multiple feature extraction increases the diversity of information produced from signature images, allowing to produce signature representations that mitigate intra-personal variability. Dichotomy transformation is then applied in the resulting feature space to allow for WI classification. This alleviates the challenges of designing off-line SV systems with a limited number of reference signatures from a large number of users. Finally, boosting feature selection is used to design low-cost classifiers that automatically select relevant features while training. Using this global WI feature selection approach allows to explore and select from large feature sets based on knowledge of a population of users. Experiments performed with real-world SV data comprised of random, simple, and skilled forgeries indicate that the proposed approach provides a high level of performance when extended shadow code and directional probability density function features are extracted at multiple scales. Comparing simulation results to those of off-line SV systems found in literature confirms the viability of the new approach, even when few reference signatures are available. Moreover, it provides an efficient framework for designing a wide range of biometric systems from limited samples with few or no counterexamples, but where new training samples emerge during operations.


Biometrics Handwriting recognition Writer-independent signature verification Feature extraction Feature selection Boosting Decision tree classification Incremental learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prabhakar S., Kittler J., Maltoni D., O’Gorman L., Tan T.: Introduction to the special issue on biometrics: progress and directions. IEEE Tran. Pattern Anal. Mach. Intell. 29(4), 513–516 (2007)CrossRefGoogle Scholar
  2. 2.
    Jain A.K., Ross A., Prabhakar S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)CrossRefGoogle Scholar
  3. 3.
    Fairhurst M.C.: Signature verification revisited: promoting practical exploitation of biometric technology. Electron. Commun. Eng. J. 9(6), 273–280 (1997)CrossRefGoogle Scholar
  4. 4.
    Jain A.K., Ross A., Pankanti S.: Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)CrossRefGoogle Scholar
  5. 5.
    Batista, L., Rivard, D., Sabourin, R., Granger, E., Maupin, P.: State of the art in off-line signature verification. In: Verma, B., Blumenstein, M. (eds.) Pattern Recognition Technologies and Applications: Recent Advances, pp. 39–62 (2008)Google Scholar
  6. 6.
    Srihari, S.N., Xu, A., Kalera, M.K.: Learning strategies and classification methods for off-line signature verification. In: Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), pp. 161–166 (2004)Google Scholar
  7. 7.
    Fabregas J., Faundez-Zanuy M.: Biometric dispersion matcher. Pattern Recognit. 41(11), 3412–3426 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Impedovo D., Pirlo G.: Automatic signature verification: the state of the art. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 38(5), 609–635 (2008)CrossRefGoogle Scholar
  9. 9.
    Sabourin, R., Genest, G.: An extended-shadow-code based approach for off-line signature verification. i. evaluation of the bar mask definition. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, Conference B: Computer Vision & Image Processing, vol. 2, pp. 450–453 (1994)Google Scholar
  10. 10.
    Drouhard J., Sabourin R., Godbout M.: A neural network approach to off-line signature verification using directional pdf. Pattern Recognit. 29(3), 415–424 (1996)CrossRefGoogle Scholar
  11. 11.
    Santos, C., Justino, E.J.R., Bortolozzi, F., Sabourin, R.: An off-line signature verification method based on the questioned document expert’s approach and a neural network classifier. In: Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR-9 2004), pp. 498–502 (2004)Google Scholar
  12. 12.
    Tieu K., Viola P.: Boosting image retrieval. Int. J. Comput. Vis. 56(1), 17–36 (2004)CrossRefGoogle Scholar
  13. 13.
    Bertolini D., Oliveira L.S., Justino E., Sabourin R.: Reducing forgeries in writer-independent off-line signature verification through ensemble of classifiers. Pattern Recognit. 43(1), 387–396 (2010)zbMATHCrossRefGoogle Scholar
  14. 14.
    Cha, S.-H., Srihari, S.N.: Writer identification: statistical analysis and dichotomizer. Advances in Pattern Recognition, Lecture Notes in Computer Science, vol. 1876/2000, pp. 123–132. Springer, Berlin (2000). doi: 10.1007/3-540-44522-6_13
  15. 15.
    Otsu N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Harrison W.R.: Suspect Documents, Their Scientific Examination. Nelso-Hall publishers, Chicago (1981)Google Scholar
  17. 17.
    Sabourin, R., Genest, G.: An extended-shadow-code based approach for off-line signature verification. ii. evaluation of several multi-classifier combination strategies. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 197–201 (1995)Google Scholar
  18. 18.
    Kalera M.K., Srihari S., Xu A.: Offline signature verification and identification using distance statistics. Int. J. Pattern Recogn. Artif. Intell. 18(7), 1339–1360 (2004)CrossRefGoogle Scholar
  19. 19.
    Schapire, R.E.: The Boosting Approach to Machine Learning: An Overview, chap. 8. Springer, New York (2003)Google Scholar
  20. 20.
    Kudo M.: Comparison of algorithms that select features for pattern classifiers. Pattern Recognit. 33(1), 25–41 (2000)CrossRefGoogle Scholar
  21. 21.
    Redpath, D.B., Lebart, K.: Observations on boosting feature selection. In: 6th International Workshop on Multiple Classifier Systems (MCS 2005), pp. 32–41 (2005)Google Scholar
  22. 22.
    Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of Thirteenth International Conference on Machine Learning, Eurpean Coordinating Committee for Artificial Intelligence; Italian Association for Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  23. 23.
    Dietterich, T.G.: Ensemble methods in machine learning. In: First International Workshop on Multiple Classifier Systems, pp. 1–15. Springer, Berlin (2000)Google Scholar
  24. 24.
    Rätsch G., Onoda T., Müller K.R.: Soft margins for adaboost. Machine Learn. 42(3), 287–320 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Servedio R.A.: Smooth boosting and learning with malicious noise. J. Mach. Learn. Res. 4, 633–648 (2003)MathSciNetGoogle Scholar
  26. 26.
    Domingo, C., Watanabe, O.: Madaboost: a modification of adaboost. In: Research Reports on Mathematical and Computing Sciences Series C (Computer Science), no. C-138, pp. 1–26. (1999)Google Scholar
  27. 27.
    Friedman J., Hastie T., Tibshirani R.: Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Stat. 28(2), 337–407 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Freund Y.: An adaptive version of the boost by majority algorithm. Mach. Learn. 43(3), 293–318 (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    Rätsch G., Warmuth M.K.: Efficient margin maximizing with boosting. J. Mach. Learn. Res. 6, 2131–2152 (2005)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Nakamura M., Nomiya H., Uehara K.: Improvement of boosting algorithm by modifying the weighting rule. Ann. Math. Artif. Intell. 41(1), 95–109 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Freund Y., Schapire R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Fawcett T.: An introduction to roc analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. Wiley, New York (2001)zbMATHGoogle Scholar
  34. 34.
    Iba, W., Langley, P.: Induction of one-level decision trees. In: Proceedings of the Ninth International Machine Learning Conference. Morgan Kaufmann, San Mateo (1992)Google Scholar
  35. 35.
    Burges C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  36. 36.
    Hoare, C.A.R.: In: Jones, C.B. (eds.) Essays in computing science. Prentice-Hall, Upper Saddle River (1989)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dominique Rivard
    • 1
  • Eric Granger
    • 1
    Email author
  • Robert Sabourin
    • 1
  1. 1.Laboratoire d’imagerie, de vision et d’intelligence artificielle (LIVIA)Ècole de technologie supérieureMontrealCanada

Personalised recommendations