Skip to main content

Advertisement

SpringerLink
  1. Home
  2. International Journal on Document Analysis and Recognition (IJDAR)
  3. Article
Markov models for offline handwriting recognition: a survey
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An improved discriminative region selection methodology for online handwriting recognition

16 November 2018

Subhasis Mandal, S. R. Mahadeva Prasanna & Suresh Sundaram

Machine learning models for mathematical symbol recognition: A stem to stern literature analysis

31 March 2022

Vinay Kukreja & Sakshi

Online separation of handwriting from freehand drawing using extreme learning machines

27 March 2019

Danilo Avola, Marco Bernardi, … Cristiano Massaroni

Recognition of Off-line Handwritten Uyghur Words Using Bayesian Networks with Grapheme Nodes

04 September 2020

Yamei Xu & Zhigang Xu

A comprehensive survey on word recognition for non-Indic and Indic scripts

25 July 2018

Harmandeep Kaur & Munish Kumar

Introducing a New High-Resolution Handwritten Digits Data Set with Writer Characteristics

24 November 2022

Cédric Beaulac & Jeffrey S. Rosenthal

Handwriting perceptual classification and synthesis using discriminate HMMs and progressive iterative approximation

25 April 2019

Hala Bezine & Adel M. Alimi

Fast multi-language LSTM-based online handwriting recognition

08 February 2020

Victor Carbune, Pedro Gonnet, … Philippe Gervais

Online handwriting recognition systems for Indic and non-Indic scripts: a review

08 August 2020

Harjeet Singh, R. K. Sharma & V. P. Singh

Download PDF
  • Full Paper
  • Open Access
  • Published: 31 October 2009

Markov models for offline handwriting recognition: a survey

  • Thomas Plötz1 &
  • Gernot A. Fink1 

International Journal on Document Analysis and Recognition (IJDAR) volume 12, pages 269–298 (2009)Cite this article

  • 5851 Accesses

  • 148 Citations

  • Metrics details

Abstract

Since their first inception more than half a century ago, automatic reading systems have evolved substantially, thereby showing impressive performance on machine-printed text. The recognition of handwriting can, however, still be considered an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic offline handwriting recognition. However, so far, no standard procedures for building Markov-model-based recognizers could be established though trends toward unified approaches can be identified. It is therefore the goal of this survey to provide a comprehensive overview of the application of Markov models in the research field of offline handwriting recognition, covering both the widely used hidden Markov models and the less complex Markov-chain or n-gram models. First, we will introduce the typical architecture of a Markov-model-based offline handwriting recognition system and make the reader familiar with the essential theoretical concepts behind Markovian models. Then, we will give a thorough review of the solutions proposed in the literature for the open problems how to apply Markov-model-based approaches to automatic offline handwriting recognition.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Arica N., Yarman-Vural F.T.: One-dimensional representation of two-dimensional information for HMM based handwriting recognition. Pattern Recogn. Lett. 21, 583–592 (2000)

    Article  Google Scholar 

  2. Arica N., Yarman-Vural F.T.: An overview of character recognition focused on off-line handwriting. IEEE Trans. Syst. Man Cybern. C Appl. 31(2), 216–232 (2001)

    Article  Google Scholar 

  3. Arica N., Yarman-Vural F.T.: Optical character recognition for cursive handwriting. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 801–813 (2002)

    Article  Google Scholar 

  4. Austin, S., Schwartz, R., Placeway, P.: The forward-backward search algorithm. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 697–700. Toronto (1991)

  5. Baum L., Petrie T.: Statistical inference for probabilistic functions of finite state markov chains. Ann. Math. Stat. 37, 1554–1563 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baum L., Petrie T., Soules G., Weiss N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benouareth, A., Ennaji, A., Sellami, M.: Semicontinuous HMMs with explicit state duration applied to Arabic handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 97–102. La Baule, France (2006)

  8. Bertolami, R., Bunke, H.: Multiple handwritten text line recognition systems derived from specific integration of a language model. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 521–525. Seoul, Korea (2005)

  9. Bertolami, R., Uchida, S., Zimmermann, M., Bunke, H.: Non-uniform slant correction for handwritten text line recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 18–22. Curitiba, Brazil (2007)

  10. Besner, D., Humphreys, G.W. (eds.): Basic Processes in Reading: Visual Word Recognition. Lawrence Earlbaum Associates, Hillsdale (1991)

    Google Scholar 

  11. Bilmes, J.: What HMMs can’t do: a graphical model perspective. In: Beyond HMM: Workshop on Statistical Modeling Approach for Speech Recognition. Kyoto, Japan (2004). ATR Invited Paper and Lecture

  12. Bocchieri E., Mak B.K.W.: Subspace distribution clustering hidden Markov model. IEEE Trans. Speech Audio Process. 9(2), 264–275 (2001)

    Article  Google Scholar 

  13. Bozinovic R.M., Srihari S.N.: Off-line cursive script word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 69–83 (1989)

    Article  Google Scholar 

  14. Brakensiek, A., Rigoll, G.: A comparison of character n-grams and dictionaries used for script recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 241–245. Seattle (2001)

  15. Brakensiek, A., Rigoll, G.: Combination of multiple classifiers for handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 117–122. Niagara on the Lake, Canada (2002)

  16. Brakensiek A., Rigoll G.: Handwritten address recognition using hidden Markov models. In: Dengel, A., Junker, M., Weisbecker, A. (eds) Reading and Learning—Adaptive Content Recognition, Lecture Notes in Computer Science, vol. 2956, pp. 103–122. Springer, Berlin (2004)

    Google Scholar 

  17. Brakensiek, A., Rottland, J., Rigoll, G.: Handwritten address recognition with open vocabulary using character n-grams. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 357–362. Niagara on the Lake, Canada (2002)

  18. Brakensiek, A., Rottland, J., Rigoll, G.: Confidence measures for an address reading system. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 294–298. Edinburgh (2003)

  19. Brakensiek, A., Rottland, J., Wallhoff, F., Rigoll, G.: Adaptation of an address reading system to local mail streams. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 872–876. Seattle (2001)

  20. Brakensiek, A., Willett, D., Rigoll, G.: Improved degraded document recognition with hybrid modeling techniques and character n-grams. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 438–441. Barcelona (2000)

  21. Britto, A.D.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A two-stage HMM-based system for recognizing handwritten numeral strings. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 396–400. Seattle (2001)

  22. Bunke, H.: Recognition of cursive Roman handwriting—Past, present and future. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 448–459 (2003)

  23. Bunke H., Roth M., Schukat-Talamazzini E.G.: Off-line cursive handwriting recognition using hidden Markov models. Pattern Recogn. 9(9), 1399–1413 (1995)

    Article  Google Scholar 

  24. Caesar, T., Gloger, J.M., Mandler, E.: Preprocessing and feature extraction for a handwriting recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 408–411. Tsukuba Science City, Japan (1993)

  25. Cai, J., Liu, Z.Q.: Markov random field models for handwritten word recognition. In: Proceedings of the International Conference Intelligent Processing Systems (ICIPS), vol. 2, pp. 1400–1404. IEEE, Beijing (1997)

  26. Cai J., Liu Z.Q.: Off-line unconstrained handwritten word recognition. Int. J. Pattern Recogn. Artif. Intell. 14(3), 259–280 (2000)

    Article  Google Scholar 

  27. Chen S.F., Goodman J.: An empirical study of smoothing techniques for language modeling. Comput. Speech Lang. 13, 359–394 (1999)

    Article  Google Scholar 

  28. Cho W., Lee S.W., Kim J.H.: Modeling and recognition of cursive words with hidden Markov models. Pattern Recogn. 28(12), 1941–1953 (1995)

    Article  Google Scholar 

  29. Choisy, C.: Dynamic handwritten keyword spotting based on the NSHP-HMM. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 242–246. Curitiba, Brazil (2007)

  30. Coetzer J., Herbst B.M., du Preez J.A.: Offline signature verification using the discrete Radon transform and a hidden Markov models. EURASIP J. Appl. Signal Process. 4, 559–571 (2004)

    Google Scholar 

  31. Coetzer, J., Herbst, B.M., du Preez, J.A.: Off-line signature verification: a comparison between human and machine performance. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 481–486. La Baule, France (2006)

  32. Colthurst, T., Kimball, O., Richardson, F., Shu, H., Wooters, C., Iyer, R., Gish, H.: The 2000 BBN Byblos LVCSR system. In: 2000 Speech Transcription Workshop. Maryland (2000)

  33. Daniels, P.T., Bright, W. (eds.): The World’s Writing Systems. Oxford University Press, New York (1996)

    Google Scholar 

  34. Davis R.: Magic paper: sketch-understanding research. IEEE Comput. 40(9), 34–41 (2007)

    Google Scholar 

  35. Decerbo, M., MacRostie, E., Natarajan, P.: The BBN Byblos Pashto OCR system. In: Proceedings of the 1st ACM Workshop on Hardcopy Document Processing, pp. 29–32. ACM New York, NY, USA, Washington, DC, USA (2004)

  36. Dehghan, M., Faez, K., Ahmadi, M., Shridhar, M.: Off-line unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov word models. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 351–354. Barcelona (2000)

  37. Dempster A.P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B 39(1), 1–22 (1977)

    MATH  MathSciNet  Google Scholar 

  38. Ding, Y., Kimura, F., Miyake, Y., Shridhar, M.: Accuracy improvement of slant estimation for handwritten words. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 527–530. Barcelona (2000)

  39. Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. 2nd edn. Wiley Interscience, New York (2000)

    Google Scholar 

  40. El Abed, H., Märgner, V.: Comparison of different preprocessing and feature extraction methods for offline recognition of handwritten Arabic words. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 974–978. Curitiba, Brazil (2007)

  41. El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting recognition using baseline dependant features and hidden Markov modeling. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 893–897. Seoul, Korea (2005)

  42. El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(7) (2009)

  43. El-Hajj, R., Mokbel, C., Likforman-Sulem, L.: Combination of HMM-based classifiers for recognition of Arabic handwritten words. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition, vol. 2, pp. 959–963. Curitiba, Brazil (2007)

  44. El-Yacoubi A., Gilloux M., Sabourin R., Suen C.Y.: An HMM-based approach for off-line unconstrained handwritten word modeling and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 752–760 (1999)

    Article  Google Scholar 

  45. Feng, B., Ding, X., Wu, Y.: Chinese handwriting recognition using hidden Markov models. In: Proceedings of the Internatinal Conference on Pattern Recognition, vol. 3, pp. 212–215. Québec (2002)

  46. Feng, S., Manmatha, R., Mccallum, A.: Exploring the use of conditional random field models and HMMs for historical handwritten document recognition. In: 2nd Internatinal Conference on Document Image Analysis for Libraries (DIAL), pp. 8–37 (2006)

  47. Fink G.A.: Markov Models for Pattern Recognition—From Theory to Applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  48. Fink, G.A., Plötz, T.: On appearance-based feature extraction methods for writer-independent handwritten text recognition. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition, vol. 2, pp. 1070–1074. IEEE, Seoul, Korea (2005)

  49. Fink, G.A., Plötz, T.: Unsupervised estimation of writing style models for improved unconstrained off-line handwriting recognition. In: Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition. IEEE, La Baule, France (2006)

  50. Fink, G.A., Plötz, T.: Tutorial on Markov models for handwriting recognition. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition. Curitiba, Brazil (2007)

  51. Fink G.A., Plötz T.: Developing pattern recognition systems based on Markov models: the ESMERALDA framework. Pattern Recogn. Image Anal. 18(2), 207–215 (2008)

    Article  Google Scholar 

  52. Fiscus, J.: A post-processing system to yield reduced word error rates: recognizer output voting error reduction. In: Furui, S., Huang, B.H., Chu, W. (eds.) Proceedings of the Workshop on Automatic Speech Recognition and Understanding, pp. 347–352. Santa Barbara (1997)

  53. Fujisawa H.: Robustness design of industrial strength recognition systems. In: Chaudhuri, B. (eds) Digital Document Processing: Major Diretions and Recent Advances, pp. 185–212. Springer, London (2007)

    Chapter  Google Scholar 

  54. Fujisawa H.: Forty years of research in character and document recognition—an industrial perspective. Pattern Recogn. 41, 2435–2446 (2008)

    Article  Google Scholar 

  55. Gader P.D., Keller J.M., Krishnapuram R., Chiang J.H., Mohamed M.A.: Neuronal and fuzzy methods in handwriting recognition. Computer 2, 79–86 (1997)

    Article  Google Scholar 

  56. Gauthier, N., Artières, T., Dorizzi, B., Ballinari, P.: Strategies for combining on-line and off-line information in an on-line handwriting recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 412–416. Seattle (2001)

  57. Ge, Y., Huo, Q.: A study on the use of CDHMM for large vocabulary offline recognition of handwritten Chinese characters. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 334–338. Niagara on the Lake, Canada (2002)

  58. Grandidier, F., Sabourin, R., Suen, C.Y.: Integration of contextual information in handwriting recognition systems. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 1252–1256. Edinburgh (2003)

  59. Günter, S., Bunke, H.: A new combination scheme for HMM-based classifiers and its application to handwriting recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 332–337. Québec (2002)

  60. Günter, S., Bunke, H.: Optimizing the number of states, training iterations and Gaussians in an HMM-based handwritten word recognizer. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 472–476. Edinburgh (2003)

  61. Günter S., Bunke H.: HMM-based handwritten word recognition: on the optimization of the number of states, training iterations and Gaussian components. Pattern Recogn. 37, 2069–2079 (2004)

    Article  Google Scholar 

  62. Huang X.D., Ariki Y., Jack M.A.: Hidden Markov Models for Speech Recognition. No. 7 in Information Technology Series. Edinburgh University Press, Edinburgh (1990)

    Google Scholar 

  63. Huang X.D., Jack M.A.: Semicontinuous hidden Markov models for speech signals. Comput. Speech Lang. 3(3), 239–251 (1989)

    Article  Google Scholar 

  64. Justino, E.J.R., El Yacoubi, A., Bortolozzi, F., Sabourin, R.: An off-line signature verification system using hidden Markov model and cross-validation. In: Proceedings of the XIII Brazilian Symposium on Computer Graphics and Image Processing, pp. 105–112 (2000)

  65. Kaltenmeier, A., Caesar, T., Gloger, J.M., Mandler, E.: Sophisticated topology of hidden Markov models for cursive script recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 139–142 (1993)

  66. Ko A.H.R., Sabourin R., de Souza Britto A. Jr.: Ensemble of HMM classifiers based on the clustering validity index for a handwritten numeral recognizer. Pattern Anal. Appl. J. 12(1), 21–35 (2009)

    Article  Google Scholar 

  67. Koerich, A.L., Britto, A.S., de Oliviera, L.E.S., Sabourin, R.: Fusing high- and low-level features for handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 151–156. La Baule, France (2006)

  68. Koerich, A.L., Leydier, Y., Sabourin, R., Suen, C.Y.: A hybrid large vocabulary handwritten word recognition system using neuronal networks with hidden Markov models. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 99–104. Niagara on the Lake, Canada (2002)

  69. Kundu A., He Y., Bahl P.: Recognition of handwritten words: first and second order hidden Markov model based approach. Pattern Recogn. 22(3), 283–297 (1989)

    Article  Google Scholar 

  70. Kundu, A., Hines, T., Phillips, J., Huyck, B.D., Van Guilder, L.C.: Arabic handwriting recognition using variable duration HMM. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 644–648. Curitiba, Brazil (2007)

  71. Li Y., Zheng Y., Doermann D., Jaeger S.: Script-independent text line segmentation in freestyle handwritten documents. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1313–1329 (2008)

    Article  Google Scholar 

  72. Likforman-Sulem L., Zahour A., Taconet B.: Text line segmentation of historical documents: a survey. Int. J. Doc. Anal. Recogn. 9(2), 123–138 (2007)

    Article  Google Scholar 

  73. Liwicki, M., Bunke, H.: Enhancing training data for handwritten recognition of whiteboard notes with samples from a different database. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 550–554. Seoul, Korea (2005)

  74. Liwicki, M., Bunke, H.: Handwriting recognition of whiteboard notes. In: Proceedings of the 12th Conference of the International Graphonomics Society, pp. 118–122 (2005)

  75. Liwicki, M., Bunke, H.: IAM-OnDB—an on-line English sentence database acquired from handwritten text on a whiteboard. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 956–961. Seoul, Korea (2005)

  76. Lorigo L.M., Govindaraju V.: Offline Arabic handwriting recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 712–724 (2006)

    Article  Google Scholar 

  77. Lowerre, B.T.: The HARPY speech recognition system. Ph.D. thesis, Carnegie-Mellon University, Department of Computer Science, Pittsburg (1976)

  78. Lu, Z., Schwartz, R., Raphael, C.: Script-independent, HMM-based text line finding for OCR. In: Proceedings of the International Conference on Pattern Recognition, pp. 551–554. Barcelona, Spain (2000)

  79. Madhvanath S., Kim G., Govindaraju V.: Chaincode contour processing for handwritten word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 928–932 (1999)

    Article  Google Scholar 

  80. Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: a literature survey. In: Proceedings of the SPIE Electronic Imaging, pp. 197–207 (2003)

  81. Märgner, V., El-Abed, H.: ICDAR 2005—Arabic handwriting recognition competition. In: Proceedings of the International Conference on Document Analysis and Recognition. Seoul, Korea (2005)

  82. Märgner, V., El-Abed, H.: ICDAR 2007—Arabic handwriting recognition competition. In: Proceedings of the International Conference on Document Analysis and Recognition (2007)

  83. Markov, A.A.: (Example of statistical investigations of the text of ,,Eugen Onegin”, wich demonstrates the connection of events in a chain). In: (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg), pp. 153–162. Sankt-Petersburg (1913, in Russian)

  84. Marti, U.V., Bunke, H.: Handwritten sentence recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 467–470. Barcelona (2000)

  85. Marti, U.V., Bunke, H.: On the influence of vocabulary size and language models in unconstrained handwritten text recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 260–265. Seattle (2001)

  86. Marti, U.V., Bunke, H.: Text line segmentation and word recognition in a system for general writer independent handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 159–163. Seattle (2001)

  87. Marti U.V., Bunke H.: Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition systems. Int. J. Pattern Recogn. Artif. Intell. 15(1), 65–90 (2001)

    Article  Google Scholar 

  88. Marti U.V., Bunke H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)

    Article  MATH  Google Scholar 

  89. Menasri, F., Vincent, N., Augustin, E., Cheriet, M.: Shape-based alphabet for off-line Arabic handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 969–973. Curitiba, Brazil (2007)

  90. Miletzki, U., Bayer, T., Schäfer, H.: Continuous learning systems: postal address readers with built-in learning capability. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 329–332. Bangalore, India (1999)

  91. Morita, M., El Yacoubi, A., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Handwritten month word recognition on Brazilian bank cheques. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 972–976. Seattle (2001)

  92. Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Segmentation and recognition of handwritten dates. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 105–110. Niagara on the Lake, Canada (2002)

  93. Natarajan P., Lu Z., Schwartz R., Bazzi I., Makhoul J.: Multilingual machine printed OCR. Int. J. Pattern Recog. Artif. Intell. 15(1), 43–63 (2001)

    Article  Google Scholar 

  94. Natarajan P., Saleem S., Prasad R., MacRostie E., Subramanian K.: Multi-lingual offline handwriting recognition using hidden Markov models: a script-independent approach. In: Doermann, D.S., Jaeger, S. (eds) Arabic and Chinese Handwriting Recognition: SACH 2006 Selected Papers, Lecture Notes in Computer Science, vol. 4768, pp. 231–250. Springer, Berlin (2008)

    Google Scholar 

  95. Nopsuwanchai R., Biem A., Clocksin W.F.: Maximization of mutual information for offline Thai handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1347–1351 (2006)

    Article  Google Scholar 

  96. Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of handwritten Arabic words. In: Proceedings of the 7th Colloque International Francophone sur l’Ecrit et le Document. Hammamet, Tunis (2002)

  97. Pechwitz, M., Märgner, V.: HMM based approach for handwritten Arabic word recognition using the IFN/ENIT-database. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 890–894. Edinburgh (2003)

  98. Pittman J.A.: Handwriting recognition: tablet PC text input. IEEE Comput. 40(9), 49–54 (2007)

    Google Scholar 

  99. Plamondon R., Srihari S.N.: On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  100. Plötz, T., Thurau, C., Fink, G.A.: Camera-based whiteboard reading: new approaches to a challenging task. In: Proceedings of the 11th International Conference on Frontiers in Handwriting Recognition, pp. 385–390. Montreal, Canada (2008)

  101. Rigoll, G., Kosmala, A., Rottland, J., Neukirchen, C.: A comparison between continuous and discrete density hidden Markov models for cursive handwriting recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 205–209. Vienna (1996)

  102. Schambach, M.P.: Determination of the number of writing variants with an HMM based cursive word recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 119–123. Edinburgh (2003)

  103. Schambach, M.P.: Fast script word recognition with very large vocabulary. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 9–13. Seoul, Korea (2005)

  104. Schambach, M.P., Rottland, J., Alary, T.: How to convert a Latin handwriting recognition system to Arabic. In: Proceedings of the International Conference on Document Analysis and Recognition (2008)

  105. Schwartz, R., LaPre, C., Makhoul, J., Raphael, C., Zhao, Y.: Language-independent OCR using a continuous speech recognition system. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 99–103. Vienna, Austria (1996)

  106. Senior A.W., Robinson A.J.: An off-line cursive handwriting recognition system. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 309–321 (1998)

    Article  Google Scholar 

  107. Starner, T., Makhoul, J., Schwartz, R., Chou, G.: On-line cursive handwriting recognition using speech recognition methods. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 125–128. Adelaide (1994)

  108. Steinherz T., Rivlin E., Intrator N.: Offline cursive script word recognition—a survey. Int. J. Doc. Anal. Recogn. 2, 90–110 (1999)

    Article  Google Scholar 

  109. Su, T.H., Zhang, T.W., Huang, H.J., Zhou, Y.: HMM-based recognizer with segmentation-free strategy for unconstrained Chinese handwriting text. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 133–137. Curitiba, Brazil (2007)

  110. Tay, Y.H., Pierre-Michel, L., Khalid, M., Knerr, S., Virad-Gaudin, C.: An analytical handwritten word recognition system with word-level discriminant training. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 726–730. Seattle (2001)

  111. Toselli, A.H., Juan, A., Vidal, E.: Spontaneous handwriting recognition and classification. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 433–436. Cambridge, UK (2004)

  112. Touj, S.M., Ben Amara, N.E., Amiri, H.: A hybrid approach for off-line Arabic handwriting recognition based on a planar hidden Markov modeling. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 964–968. Curitiba, Brazil (2007)

  113. Trier O.D., Taxt T.: Evaluation of binarization methods for document images. IEEE Trans. Pattern Anal. Mach. Intell. 17(3), 312–315 (1995)

    Article  Google Scholar 

  114. Vajda, S., Belaïd, A.: Structural information implant in a context based segmentation-free HMM handwritten word recognition system for Latin and Bangla scripts. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 1126–1130. Seoul, Korea (2005)

  115. Vinciarelli A.: A survey on off-line cursive word recognition. Pattern Recogn. 35, 1433–1446 (2002)

    Article  MATH  Google Scholar 

  116. Vinciarelli, A., Bengio, S.: Writer adaptation techniques in off-line cursive word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 287–291. Niagara on the Lake, Canada (2002)

  117. Vinciarelli A., Bengio S., Bunke H.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 709–720 (2004)

    Article  Google Scholar 

  118. Vinciarelli, A., Luettin, J.: Off-line cursive script recognition based on continuous density HMM. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 493–498 (2000)

  119. Vinciarelli A., Luettin J.: A new normalization technique for cursive handwritten words. Pattern Recogn. Lett. 22(9), 1043–1050 (2001)

    Article  MATH  Google Scholar 

  120. Viterbi A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)

    Article  MATH  Google Scholar 

  121. Wang, W., Brakensiek, A., Kosmala, A., Rigoll, G.: Multi-branch and two-pass HMM modeling approaches for off-line cursive handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 231–235. Seattle (2001)

  122. Wang, W., Brakensiek, A., Rigoll, G.: Combining HMM-based two-pass classifiers for off-line word recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 151–154. Québec (2002)

  123. Wienecke, M., Fink, G.A., Sagerer, G.: Experiments in unconstrained offline handwritten text recognition. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition. IEEE, Ontario, Canada (2002)

  124. Wienecke, M., Fink, G.A., Sagerer, G.: Toward automatic video-based whiteboard reading. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 87–91. IEEE, Edinburgh, Scotland (2003)

  125. Wienecke M., Fink G.A., Sagerer G.: Toward automatic video-based whiteboard reading. Int. J. Doc. Anal. Recogn. 7(2–3), 188–200 (2005)

    Article  Google Scholar 

  126. Xu, Q., Kim, J.H., Lam, L., Suen, C.Y.: Recognition of handwritten month words on bank cheques. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 111–116. Niagara on the Lake, Canada (2002)

  127. Xue H., Govindaraju V.: Hidden Markov models combining discrete symbols and continuous attributes in handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 458–462 (2006)

    Article  Google Scholar 

  128. Young S.: A review of large-vocabulary continuous-speech recognition. IEEE Signal Process. Mag. 13(9), 45–57 (1996)

    Article  Google Scholar 

  129. Zimmermann, M., Bunke, H.: Automatic segmentation of the IAM off-line database for handwritten English text. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 35–39. Québec (2002)

  130. Zimmermann, M., Bunke, H.: Hidden Markov model length optimization for handwriting recognition systems. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 369–374. Niagara on the Lake, Canada (2002)

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Intelligent Systems Group, Robotics Research Institute, Technische Universität Dortmund, Otto-Hahn-Strasse 8, 44227, Dortmund, Germany

    Thomas Plötz & Gernot A. Fink

Authors
  1. Thomas Plötz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gernot A. Fink
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Thomas Plötz.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Plötz, T., Fink, G.A. Markov models for offline handwriting recognition: a survey. IJDAR 12, 269–298 (2009). https://doi.org/10.1007/s10032-009-0098-4

Download citation

  • Received: 16 February 2009

  • Revised: 26 June 2009

  • Accepted: 31 August 2009

  • Published: 31 October 2009

  • Issue Date: December 2009

  • DOI: https://doi.org/10.1007/s10032-009-0098-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Offline handwriting recognition
  • Hidden Markov models
  • n-Gram language models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.