Abstract
Since their first inception more than half a century ago, automatic reading systems have evolved substantially, thereby showing impressive performance on machine-printed text. The recognition of handwriting can, however, still be considered an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic offline handwriting recognition. However, so far, no standard procedures for building Markov-model-based recognizers could be established though trends toward unified approaches can be identified. It is therefore the goal of this survey to provide a comprehensive overview of the application of Markov models in the research field of offline handwriting recognition, covering both the widely used hidden Markov models and the less complex Markov-chain or n-gram models. First, we will introduce the typical architecture of a Markov-model-based offline handwriting recognition system and make the reader familiar with the essential theoretical concepts behind Markovian models. Then, we will give a thorough review of the solutions proposed in the literature for the open problems how to apply Markov-model-based approaches to automatic offline handwriting recognition.
References
Arica N., Yarman-Vural F.T.: One-dimensional representation of two-dimensional information for HMM based handwriting recognition. Pattern Recogn. Lett. 21, 583–592 (2000)
Arica N., Yarman-Vural F.T.: An overview of character recognition focused on off-line handwriting. IEEE Trans. Syst. Man Cybern. C Appl. 31(2), 216–232 (2001)
Arica N., Yarman-Vural F.T.: Optical character recognition for cursive handwriting. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 801–813 (2002)
Austin, S., Schwartz, R., Placeway, P.: The forward-backward search algorithm. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 697–700. Toronto (1991)
Baum L., Petrie T.: Statistical inference for probabilistic functions of finite state markov chains. Ann. Math. Stat. 37, 1554–1563 (1966)
Baum L., Petrie T., Soules G., Weiss N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164–171 (1970)
Benouareth, A., Ennaji, A., Sellami, M.: Semicontinuous HMMs with explicit state duration applied to Arabic handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 97–102. La Baule, France (2006)
Bertolami, R., Bunke, H.: Multiple handwritten text line recognition systems derived from specific integration of a language model. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 521–525. Seoul, Korea (2005)
Bertolami, R., Uchida, S., Zimmermann, M., Bunke, H.: Non-uniform slant correction for handwritten text line recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 18–22. Curitiba, Brazil (2007)
Besner, D., Humphreys, G.W. (eds.): Basic Processes in Reading: Visual Word Recognition. Lawrence Earlbaum Associates, Hillsdale (1991)
Bilmes, J.: What HMMs can’t do: a graphical model perspective. In: Beyond HMM: Workshop on Statistical Modeling Approach for Speech Recognition. Kyoto, Japan (2004). ATR Invited Paper and Lecture
Bocchieri E., Mak B.K.W.: Subspace distribution clustering hidden Markov model. IEEE Trans. Speech Audio Process. 9(2), 264–275 (2001)
Bozinovic R.M., Srihari S.N.: Off-line cursive script word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 69–83 (1989)
Brakensiek, A., Rigoll, G.: A comparison of character n-grams and dictionaries used for script recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 241–245. Seattle (2001)
Brakensiek, A., Rigoll, G.: Combination of multiple classifiers for handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 117–122. Niagara on the Lake, Canada (2002)
Brakensiek A., Rigoll G.: Handwritten address recognition using hidden Markov models. In: Dengel, A., Junker, M., Weisbecker, A. (eds) Reading and Learning—Adaptive Content Recognition, Lecture Notes in Computer Science, vol. 2956, pp. 103–122. Springer, Berlin (2004)
Brakensiek, A., Rottland, J., Rigoll, G.: Handwritten address recognition with open vocabulary using character n-grams. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 357–362. Niagara on the Lake, Canada (2002)
Brakensiek, A., Rottland, J., Rigoll, G.: Confidence measures for an address reading system. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 294–298. Edinburgh (2003)
Brakensiek, A., Rottland, J., Wallhoff, F., Rigoll, G.: Adaptation of an address reading system to local mail streams. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 872–876. Seattle (2001)
Brakensiek, A., Willett, D., Rigoll, G.: Improved degraded document recognition with hybrid modeling techniques and character n-grams. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 438–441. Barcelona (2000)
Britto, A.D.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A two-stage HMM-based system for recognizing handwritten numeral strings. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 396–400. Seattle (2001)
Bunke, H.: Recognition of cursive Roman handwriting—Past, present and future. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 448–459 (2003)
Bunke H., Roth M., Schukat-Talamazzini E.G.: Off-line cursive handwriting recognition using hidden Markov models. Pattern Recogn. 9(9), 1399–1413 (1995)
Caesar, T., Gloger, J.M., Mandler, E.: Preprocessing and feature extraction for a handwriting recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 408–411. Tsukuba Science City, Japan (1993)
Cai, J., Liu, Z.Q.: Markov random field models for handwritten word recognition. In: Proceedings of the International Conference Intelligent Processing Systems (ICIPS), vol. 2, pp. 1400–1404. IEEE, Beijing (1997)
Cai J., Liu Z.Q.: Off-line unconstrained handwritten word recognition. Int. J. Pattern Recogn. Artif. Intell. 14(3), 259–280 (2000)
Chen S.F., Goodman J.: An empirical study of smoothing techniques for language modeling. Comput. Speech Lang. 13, 359–394 (1999)
Cho W., Lee S.W., Kim J.H.: Modeling and recognition of cursive words with hidden Markov models. Pattern Recogn. 28(12), 1941–1953 (1995)
Choisy, C.: Dynamic handwritten keyword spotting based on the NSHP-HMM. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 242–246. Curitiba, Brazil (2007)
Coetzer J., Herbst B.M., du Preez J.A.: Offline signature verification using the discrete Radon transform and a hidden Markov models. EURASIP J. Appl. Signal Process. 4, 559–571 (2004)
Coetzer, J., Herbst, B.M., du Preez, J.A.: Off-line signature verification: a comparison between human and machine performance. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 481–486. La Baule, France (2006)
Colthurst, T., Kimball, O., Richardson, F., Shu, H., Wooters, C., Iyer, R., Gish, H.: The 2000 BBN Byblos LVCSR system. In: 2000 Speech Transcription Workshop. Maryland (2000)
Daniels, P.T., Bright, W. (eds.): The World’s Writing Systems. Oxford University Press, New York (1996)
Davis R.: Magic paper: sketch-understanding research. IEEE Comput. 40(9), 34–41 (2007)
Decerbo, M., MacRostie, E., Natarajan, P.: The BBN Byblos Pashto OCR system. In: Proceedings of the 1st ACM Workshop on Hardcopy Document Processing, pp. 29–32. ACM New York, NY, USA, Washington, DC, USA (2004)
Dehghan, M., Faez, K., Ahmadi, M., Shridhar, M.: Off-line unconstrained Farsi handwritten word recognition using fuzzy vector quantization and hidden Markov word models. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 351–354. Barcelona (2000)
Dempster A.P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B 39(1), 1–22 (1977)
Ding, Y., Kimura, F., Miyake, Y., Shridhar, M.: Accuracy improvement of slant estimation for handwritten words. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 527–530. Barcelona (2000)
Duda R.O., Hart P.E., Stork D.G.: Pattern Classification. 2nd edn. Wiley Interscience, New York (2000)
El Abed, H., Märgner, V.: Comparison of different preprocessing and feature extraction methods for offline recognition of handwritten Arabic words. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 974–978. Curitiba, Brazil (2007)
El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Arabic handwriting recognition using baseline dependant features and hidden Markov modeling. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 893–897. Seoul, Korea (2005)
El-Hajj, R., Likforman-Sulem, L., Mokbel, C.: Combining slanted-frame classifiers for improved HMM-based Arabic handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(7) (2009)
El-Hajj, R., Mokbel, C., Likforman-Sulem, L.: Combination of HMM-based classifiers for recognition of Arabic handwritten words. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition, vol. 2, pp. 959–963. Curitiba, Brazil (2007)
El-Yacoubi A., Gilloux M., Sabourin R., Suen C.Y.: An HMM-based approach for off-line unconstrained handwritten word modeling and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 752–760 (1999)
Feng, B., Ding, X., Wu, Y.: Chinese handwriting recognition using hidden Markov models. In: Proceedings of the Internatinal Conference on Pattern Recognition, vol. 3, pp. 212–215. Québec (2002)
Feng, S., Manmatha, R., Mccallum, A.: Exploring the use of conditional random field models and HMMs for historical handwritten document recognition. In: 2nd Internatinal Conference on Document Image Analysis for Libraries (DIAL), pp. 8–37 (2006)
Fink G.A.: Markov Models for Pattern Recognition—From Theory to Applications. Springer, Heidelberg (2008)
Fink, G.A., Plötz, T.: On appearance-based feature extraction methods for writer-independent handwritten text recognition. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition, vol. 2, pp. 1070–1074. IEEE, Seoul, Korea (2005)
Fink, G.A., Plötz, T.: Unsupervised estimation of writing style models for improved unconstrained off-line handwriting recognition. In: Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition. IEEE, La Baule, France (2006)
Fink, G.A., Plötz, T.: Tutorial on Markov models for handwriting recognition. In: Proceedings of the Internatinal Conference on Document Analysis and Recognition. Curitiba, Brazil (2007)
Fink G.A., Plötz T.: Developing pattern recognition systems based on Markov models: the ESMERALDA framework. Pattern Recogn. Image Anal. 18(2), 207–215 (2008)
Fiscus, J.: A post-processing system to yield reduced word error rates: recognizer output voting error reduction. In: Furui, S., Huang, B.H., Chu, W. (eds.) Proceedings of the Workshop on Automatic Speech Recognition and Understanding, pp. 347–352. Santa Barbara (1997)
Fujisawa H.: Robustness design of industrial strength recognition systems. In: Chaudhuri, B. (eds) Digital Document Processing: Major Diretions and Recent Advances, pp. 185–212. Springer, London (2007)
Fujisawa H.: Forty years of research in character and document recognition—an industrial perspective. Pattern Recogn. 41, 2435–2446 (2008)
Gader P.D., Keller J.M., Krishnapuram R., Chiang J.H., Mohamed M.A.: Neuronal and fuzzy methods in handwriting recognition. Computer 2, 79–86 (1997)
Gauthier, N., Artières, T., Dorizzi, B., Ballinari, P.: Strategies for combining on-line and off-line information in an on-line handwriting recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 412–416. Seattle (2001)
Ge, Y., Huo, Q.: A study on the use of CDHMM for large vocabulary offline recognition of handwritten Chinese characters. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 334–338. Niagara on the Lake, Canada (2002)
Grandidier, F., Sabourin, R., Suen, C.Y.: Integration of contextual information in handwriting recognition systems. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 1252–1256. Edinburgh (2003)
Günter, S., Bunke, H.: A new combination scheme for HMM-based classifiers and its application to handwriting recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 332–337. Québec (2002)
Günter, S., Bunke, H.: Optimizing the number of states, training iterations and Gaussians in an HMM-based handwritten word recognizer. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 472–476. Edinburgh (2003)
Günter S., Bunke H.: HMM-based handwritten word recognition: on the optimization of the number of states, training iterations and Gaussian components. Pattern Recogn. 37, 2069–2079 (2004)
Huang X.D., Ariki Y., Jack M.A.: Hidden Markov Models for Speech Recognition. No. 7 in Information Technology Series. Edinburgh University Press, Edinburgh (1990)
Huang X.D., Jack M.A.: Semicontinuous hidden Markov models for speech signals. Comput. Speech Lang. 3(3), 239–251 (1989)
Justino, E.J.R., El Yacoubi, A., Bortolozzi, F., Sabourin, R.: An off-line signature verification system using hidden Markov model and cross-validation. In: Proceedings of the XIII Brazilian Symposium on Computer Graphics and Image Processing, pp. 105–112 (2000)
Kaltenmeier, A., Caesar, T., Gloger, J.M., Mandler, E.: Sophisticated topology of hidden Markov models for cursive script recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 139–142 (1993)
Ko A.H.R., Sabourin R., de Souza Britto A. Jr.: Ensemble of HMM classifiers based on the clustering validity index for a handwritten numeral recognizer. Pattern Anal. Appl. J. 12(1), 21–35 (2009)
Koerich, A.L., Britto, A.S., de Oliviera, L.E.S., Sabourin, R.: Fusing high- and low-level features for handwritten word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 151–156. La Baule, France (2006)
Koerich, A.L., Leydier, Y., Sabourin, R., Suen, C.Y.: A hybrid large vocabulary handwritten word recognition system using neuronal networks with hidden Markov models. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 99–104. Niagara on the Lake, Canada (2002)
Kundu A., He Y., Bahl P.: Recognition of handwritten words: first and second order hidden Markov model based approach. Pattern Recogn. 22(3), 283–297 (1989)
Kundu, A., Hines, T., Phillips, J., Huyck, B.D., Van Guilder, L.C.: Arabic handwriting recognition using variable duration HMM. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 644–648. Curitiba, Brazil (2007)
Li Y., Zheng Y., Doermann D., Jaeger S.: Script-independent text line segmentation in freestyle handwritten documents. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1313–1329 (2008)
Likforman-Sulem L., Zahour A., Taconet B.: Text line segmentation of historical documents: a survey. Int. J. Doc. Anal. Recogn. 9(2), 123–138 (2007)
Liwicki, M., Bunke, H.: Enhancing training data for handwritten recognition of whiteboard notes with samples from a different database. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 550–554. Seoul, Korea (2005)
Liwicki, M., Bunke, H.: Handwriting recognition of whiteboard notes. In: Proceedings of the 12th Conference of the International Graphonomics Society, pp. 118–122 (2005)
Liwicki, M., Bunke, H.: IAM-OnDB—an on-line English sentence database acquired from handwritten text on a whiteboard. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 956–961. Seoul, Korea (2005)
Lorigo L.M., Govindaraju V.: Offline Arabic handwriting recognition: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 712–724 (2006)
Lowerre, B.T.: The HARPY speech recognition system. Ph.D. thesis, Carnegie-Mellon University, Department of Computer Science, Pittsburg (1976)
Lu, Z., Schwartz, R., Raphael, C.: Script-independent, HMM-based text line finding for OCR. In: Proceedings of the International Conference on Pattern Recognition, pp. 551–554. Barcelona, Spain (2000)
Madhvanath S., Kim G., Govindaraju V.: Chaincode contour processing for handwritten word recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 928–932 (1999)
Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: a literature survey. In: Proceedings of the SPIE Electronic Imaging, pp. 197–207 (2003)
Märgner, V., El-Abed, H.: ICDAR 2005—Arabic handwriting recognition competition. In: Proceedings of the International Conference on Document Analysis and Recognition. Seoul, Korea (2005)
Märgner, V., El-Abed, H.: ICDAR 2007—Arabic handwriting recognition competition. In: Proceedings of the International Conference on Document Analysis and Recognition (2007)
Markov, A.A.:
(Example of statistical investigations of the text of ,,Eugen Onegin”, wich demonstrates the connection of events in a chain). In:
(Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg), pp. 153–162. Sankt-Petersburg (1913, in Russian)
Marti, U.V., Bunke, H.: Handwritten sentence recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 467–470. Barcelona (2000)
Marti, U.V., Bunke, H.: On the influence of vocabulary size and language models in unconstrained handwritten text recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 260–265. Seattle (2001)
Marti, U.V., Bunke, H.: Text line segmentation and word recognition in a system for general writer independent handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 159–163. Seattle (2001)
Marti U.V., Bunke H.: Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition systems. Int. J. Pattern Recogn. Artif. Intell. 15(1), 65–90 (2001)
Marti U.V., Bunke H.: The IAM-database: an English sentence database for offline handwriting recognition. Int. J. Doc. Anal. Recogn. 5(1), 39–46 (2002)
Menasri, F., Vincent, N., Augustin, E., Cheriet, M.: Shape-based alphabet for off-line Arabic handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 969–973. Curitiba, Brazil (2007)
Miletzki, U., Bayer, T., Schäfer, H.: Continuous learning systems: postal address readers with built-in learning capability. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 329–332. Bangalore, India (1999)
Morita, M., El Yacoubi, A., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Handwritten month word recognition on Brazilian bank cheques. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 972–976. Seattle (2001)
Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Segmentation and recognition of handwritten dates. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 105–110. Niagara on the Lake, Canada (2002)
Natarajan P., Lu Z., Schwartz R., Bazzi I., Makhoul J.: Multilingual machine printed OCR. Int. J. Pattern Recog. Artif. Intell. 15(1), 43–63 (2001)
Natarajan P., Saleem S., Prasad R., MacRostie E., Subramanian K.: Multi-lingual offline handwriting recognition using hidden Markov models: a script-independent approach. In: Doermann, D.S., Jaeger, S. (eds) Arabic and Chinese Handwriting Recognition: SACH 2006 Selected Papers, Lecture Notes in Computer Science, vol. 4768, pp. 231–250. Springer, Berlin (2008)
Nopsuwanchai R., Biem A., Clocksin W.F.: Maximization of mutual information for offline Thai handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1347–1351 (2006)
Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of handwritten Arabic words. In: Proceedings of the 7th Colloque International Francophone sur l’Ecrit et le Document. Hammamet, Tunis (2002)
Pechwitz, M., Märgner, V.: HMM based approach for handwritten Arabic word recognition using the IFN/ENIT-database. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 890–894. Edinburgh (2003)
Pittman J.A.: Handwriting recognition: tablet PC text input. IEEE Comput. 40(9), 49–54 (2007)
Plamondon R., Srihari S.N.: On-line and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)
Plötz, T., Thurau, C., Fink, G.A.: Camera-based whiteboard reading: new approaches to a challenging task. In: Proceedings of the 11th International Conference on Frontiers in Handwriting Recognition, pp. 385–390. Montreal, Canada (2008)
Rigoll, G., Kosmala, A., Rottland, J., Neukirchen, C.: A comparison between continuous and discrete density hidden Markov models for cursive handwriting recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 205–209. Vienna (1996)
Schambach, M.P.: Determination of the number of writing variants with an HMM based cursive word recognition system. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 119–123. Edinburgh (2003)
Schambach, M.P.: Fast script word recognition with very large vocabulary. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 9–13. Seoul, Korea (2005)
Schambach, M.P., Rottland, J., Alary, T.: How to convert a Latin handwriting recognition system to Arabic. In: Proceedings of the International Conference on Document Analysis and Recognition (2008)
Schwartz, R., LaPre, C., Makhoul, J., Raphael, C., Zhao, Y.: Language-independent OCR using a continuous speech recognition system. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 99–103. Vienna, Austria (1996)
Senior A.W., Robinson A.J.: An off-line cursive handwriting recognition system. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 309–321 (1998)
Starner, T., Makhoul, J., Schwartz, R., Chou, G.: On-line cursive handwriting recognition using speech recognition methods. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. 125–128. Adelaide (1994)
Steinherz T., Rivlin E., Intrator N.: Offline cursive script word recognition—a survey. Int. J. Doc. Anal. Recogn. 2, 90–110 (1999)
Su, T.H., Zhang, T.W., Huang, H.J., Zhou, Y.: HMM-based recognizer with segmentation-free strategy for unconstrained Chinese handwriting text. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 1, pp. 133–137. Curitiba, Brazil (2007)
Tay, Y.H., Pierre-Michel, L., Khalid, M., Knerr, S., Virad-Gaudin, C.: An analytical handwritten word recognition system with word-level discriminant training. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 726–730. Seattle (2001)
Toselli, A.H., Juan, A., Vidal, E.: Spontaneous handwriting recognition and classification. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 433–436. Cambridge, UK (2004)
Touj, S.M., Ben Amara, N.E., Amiri, H.: A hybrid approach for off-line Arabic handwriting recognition based on a planar hidden Markov modeling. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 964–968. Curitiba, Brazil (2007)
Trier O.D., Taxt T.: Evaluation of binarization methods for document images. IEEE Trans. Pattern Anal. Mach. Intell. 17(3), 312–315 (1995)
Vajda, S., Belaïd, A.: Structural information implant in a context based segmentation-free HMM handwritten word recognition system for Latin and Bangla scripts. In: Proceedings of the International Conference on Document Analysis and Recognition, vol. 2, pp. 1126–1130. Seoul, Korea (2005)
Vinciarelli A.: A survey on off-line cursive word recognition. Pattern Recogn. 35, 1433–1446 (2002)
Vinciarelli, A., Bengio, S.: Writer adaptation techniques in off-line cursive word recognition. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 287–291. Niagara on the Lake, Canada (2002)
Vinciarelli A., Bengio S., Bunke H.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 709–720 (2004)
Vinciarelli, A., Luettin, J.: Off-line cursive script recognition based on continuous density HMM. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 493–498 (2000)
Vinciarelli A., Luettin J.: A new normalization technique for cursive handwritten words. Pattern Recogn. Lett. 22(9), 1043–1050 (2001)
Viterbi A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13, 260–269 (1967)
Wang, W., Brakensiek, A., Kosmala, A., Rigoll, G.: Multi-branch and two-pass HMM modeling approaches for off-line cursive handwriting recognition. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 231–235. Seattle (2001)
Wang, W., Brakensiek, A., Rigoll, G.: Combining HMM-based two-pass classifiers for off-line word recognition. In: Proceedings of the International Conference on Pattern Recognition, vol. 3, pp. 151–154. Québec (2002)
Wienecke, M., Fink, G.A., Sagerer, G.: Experiments in unconstrained offline handwritten text recognition. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition. IEEE, Ontario, Canada (2002)
Wienecke, M., Fink, G.A., Sagerer, G.: Toward automatic video-based whiteboard reading. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 87–91. IEEE, Edinburgh, Scotland (2003)
Wienecke M., Fink G.A., Sagerer G.: Toward automatic video-based whiteboard reading. Int. J. Doc. Anal. Recogn. 7(2–3), 188–200 (2005)
Xu, Q., Kim, J.H., Lam, L., Suen, C.Y.: Recognition of handwritten month words on bank cheques. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 111–116. Niagara on the Lake, Canada (2002)
Xue H., Govindaraju V.: Hidden Markov models combining discrete symbols and continuous attributes in handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 458–462 (2006)
Young S.: A review of large-vocabulary continuous-speech recognition. IEEE Signal Process. Mag. 13(9), 45–57 (1996)
Zimmermann, M., Bunke, H.: Automatic segmentation of the IAM off-line database for handwritten English text. In: Proceedings of the International Conference on Pattern Recognition, vol. 4, pp. 35–39. Québec (2002)
Zimmermann, M., Bunke, H.: Hidden Markov model length optimization for handwriting recognition systems. In: Proceedings of the International Workshop on Frontiers in Handwriting Recognition, pp. 369–374. Niagara on the Lake, Canada (2002)
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Plötz, T., Fink, G.A. Markov models for offline handwriting recognition: a survey. IJDAR 12, 269–298 (2009). https://doi.org/10.1007/s10032-009-0098-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10032-009-0098-4
Keywords
- Offline handwriting recognition
- Hidden Markov models
- n-Gram language models