Advertisement

ICDAR 2003 robust reading competitions: entries, results, and future directions

  • Simon M. Lucas
  • Alex Panaretos
  • Luis Sosa
  • Anthony Tang
  • Shirley Wong
  • Robert Young
  • Kazuki Ashida
  • Hiroki Nagai
  • Masayuki Okamoto
  • Hiroaki Yamamoto
  • Hidetoshi Miyao
  • JunMin Zhu
  • WuWen Ou
  • Christian Wolf
  • Jean-Michel Jolion
  • Leon Todoran
  • Marcel Worring
  • Xiaofan Lin
Article

Abstract.

This paper describes the robust reading competitions for ICDAR 2003. With the rapid growth in research over the last few years on recognizing text in natural scenes, there is an urgent need to establish some common benchmark datasets and gain a clear understanding of the current state of the art. We use the term ‘robust reading’ to refer to text images that are beyond the capabilities of current commercial OCR packages. We chose to break down the robust reading problem into three subproblems and run competitions for each stage, and also a competition for the best overall system. The subproblems we chose were text locating, character recognition and word recognition. By breaking down the problem in this way, we hoped to gain a better understanding of the state of the art in each of the subproblems. Furthermore, our methodology involved storing detailed results of applying each algorithm to each image in the datasets, allowing researchers to study in depth the strengths and weaknesses of each algorithm. The text-locating contest was the only one to have any entries. We give a brief description of each entry and present the results of this contest, showing cases where the leading entries succeed and fail. We also describe an algorithm for combining the outputs of the individual text locators and show how the combination scheme improves on any of the individual systems.

Keywords:

Reading competition Text locating Camera captured 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baird H, Popat K (2002) Human interactive proofs and document image analysis. In: Proceedings of the 5th IAPR international workshop on document analysis systems, Princeton, NJ, pp 507-518Google Scholar
  2. 2.
    Baird HS (1993) Document image defect models and their uses. In: Proceedings of the 2nd IAPR international conference on document analysis and recognition, pp 62-67Google Scholar
  3. 3.
    Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New YorkGoogle Scholar
  4. 4.
    Bieber G, Carpenter J Introduction to service-oriented programming (rev 2.1). http://www.openwings.org/download/specs/ ServiceOrientedIntroduction.pdfGoogle Scholar
  5. 5.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121-167Google Scholar
  6. 6.
    Celenk M (1990) A color clustering technique for image segmentation. Comput Vis Graph Image Process 52:145-170Google Scholar
  7. 7.
    Chang J, Chen X, Hanneman A, Yang J, Waibel A (2002) A robust approach for recognition of text embedded in natural scenes. Proceedings of the international conference on pattern recognition, pp 204-207Google Scholar
  8. 8.
    Clark P, Mirmehdi M (2000) Combining statistical measures to find image text regions. In: Proceedings of the 15th international conference on pattern recognition, pp 450-453. IEEE Press, New YorkGoogle Scholar
  9. 9.
    Collobert R, Bengio S (2001) SVMTorch: Support vector machines for large-scale regression problems. J Mach Learn Res 1:143-160Google Scholar
  10. 10.
    Jain AK, Yu B (1998) Automatic text location in images and video frame. Pattern Recog 31(12):2055-2076Google Scholar
  11. 11.
    Li H, Doermann D, Kia O (2000) Automatic text detection and tracking in digital videos. IEEE Trans Image Process 9(1):147-156Google Scholar
  12. 12.
    Liang J, Phillips I, Haralick R (1997) Performance evaluation of document layout analysis algorithms on the UW data set. In: Proceedings of SPIE, Document Recognition IV, pp 149-160Google Scholar
  13. 13.
    Lienhart R, Wernicke A (2002) Localizing and segmenting text in images and videos. IEEE Trans Circuits Syst Video Technol 12(4):256-268Google Scholar
  14. 14.
    Liu J, Yang YH (1994) Multiresolution color image segmentation. IEEE Trans Pattern Anal Mach Intell 16:689-700Google Scholar
  15. 15.
    Lucas S (2002) Web-based evaluation and deployment of pattern recognizers. Proceedings of the international conference on pattern recognition, pp 419-422Google Scholar
  16. 16.
    Maio D, Maltoni D, Cappelli R, Wayman J, Jain A (2002) Fvc2000: Fingerprint verification competition. IEEE Trans Pattern Anal Mach Intell 24:402-412Google Scholar
  17. 17.
    Mariano V, Min J, Park J-H, Kasturi R, Mihalcik D, Li H, Doermann D, Drayer T (2002) Performance evaluation of object detection algorithms. In: Proceedings of the 16th international conference on pattern recognition. IEEE Press, New York, 3:965-969Google Scholar
  18. 18.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62-66Google Scholar
  19. 19.
    Park SH, Yun ID, Lee SU (1998) Color image segmentation based on 3-d clustering: a morphological approach. Pattern Recog 31(8):1061-1076Google Scholar
  20. 20.
    Pavlidis T (1982) Algorithms for graphics and image processing. Computer Science Press, Rockville, MDGoogle Scholar
  21. 21.
    Rahman A, Fairhurst M (2003) Multiple classifier decision combination strategies for character recognition: a review. Int J Doc Anal Recog 5(4):166-194Google Scholar
  22. 22.
    Todoran L, Worring M, Smeulders A (2002) Data groundtruth, complexity and evaluation measures for color document analysis. In: Proceedings of the 5th IAPR international workshop on document analysis systems, Princeton, NJ, pp 519-531Google Scholar
  23. 23.
    Trier O, Jain A (1995) Goal-directed evaluation of binarization methods. IEEE Trans Pattern Anal Mach Intell 17:1191-1201Google Scholar
  24. 24.
    von Ahn L, Blum M, Hopper N, Langford J, Manber U The CAPTCHA project. http://www.captcha.netGoogle Scholar
  25. 25.
    Vapnik V (1998) Statistical learning theory. Wiley, New YorkGoogle Scholar
  26. 26.
    Wu V, Manmatha R, Riseman E (1999) Textfinder: an automatic system to detect and recognize text in images. IEEE Trans Pattern Anal Mach Intell 21(11):1224-1229Google Scholar
  27. 27.
    Wolf C (2003) Text detection in images taken from videos sequences for semantic indexing. PhD thesis, Institut National de Sciences Appliquées de Lyon, 20, rue Albert Einstein, 69621 Villeurbanne Cedex, FranceGoogle Scholar
  28. 28.
    Wolf C, Jolion J, Chassaing F (2001) Procédé de détection de zones de texte dans une image vidéo. Patent France Télécom, Ref. No. FR 01 06776, June 2001Google Scholar
  29. 29.
    Wolf C, Jolion J, Laurent C (2003) Extraction d’informations textuelles contenues dans les images et les séquences audio-visuelles par une approche de type machine á vecteurs supports. Patent France Télécom, Ref. No. FR 03 11918, October 2003Google Scholar
  30. 30.
    Wolf C, Jolion J-M (2002) Extraction and recognition of artificial text in multimedia documents. Technical Report 2002.01, Technical Report, Reconnaissance de Formes et Vision LabGoogle Scholar
  31. 31.
    Wolf C, Jolion J-M (2003) Extraction and recognition of artificial text in multimedia documents. Pattern Anal Appl 6(4):309-326Google Scholar
  32. 32.
    Wolf C, Jolion J-M, Chassaing F (2002) Text localization, enhancement and binarization in multimedia documents. In: Proceedings of the international conference on pattern recognition, 4:1037-1040Google Scholar
  33. 33.
    Wu V, Manmatha R, Riseman EM (1997) Finding text in images. In: Proceedings of the 2nd ACM conference on digital libraries, pp 3-12Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2005

Authors and Affiliations

  • Simon M. Lucas
    • 1
  • Alex Panaretos
    • 1
  • Luis Sosa
    • 1
  • Anthony Tang
    • 1
  • Shirley Wong
    • 1
  • Robert Young
    • 1
  • Kazuki Ashida
    • 2
  • Hiroki Nagai
    • 2
  • Masayuki Okamoto
    • 2
  • Hiroaki Yamamoto
    • 2
  • Hidetoshi Miyao
    • 2
  • JunMin Zhu
    • 3
  • WuWen Ou
    • 3
  • Christian Wolf
    • 4
  • Jean-Michel Jolion
    • 4
  • Leon Todoran
    • 5
  • Marcel Worring
    • 5
  • Xiaofan Lin
    • 6
  1. 1.Department of Computer ScienceUniversity of EssexColchesterUK
  2. 2.Department of Information EngineeringFaculty of Engineering, Shinshu UniversityJapan
  3. 3.Institute of AutomationChinese Academy of ScienceBeijingP.R. China
  4. 4.Lyon Research Center for Images and Intelligent Information Systems (LIRIS)INSA de Lyon, Bt. J. Verne 20Villeurbanne cedexFrance
  5. 5.Informatics InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  6. 6.Hewlett-Packard LaboratoriesPalo AltoUSA

Personalised recommendations