pp 1–8 | Cite as

Comparison of Surgisis, Vypro II and TiMesh in contaminated and clean field

  • J. Filipović-Čugura
  • Z. Misir
  • P. Hrabač
  • T. Orešić
  • D. Vidović
  • B. Misir
  • N. Filipović
  • I. KiracEmail author
  • A. Mijić
Original Article



The study aimed to evaluate the histologic properties and infection resistance of three different mesh materials in a rat model.


Each mesh, in both infectious (n = 96) and non-infectious groups (n = 270), was positioned both in sublay (preperitoneally) and onlay (subcutaneously) locations. Properties of the biological (Surgisis; Cook Surgical), composite, partially resorbing (Vypro II mesh; Ethicon) and non-resorbing (TiMesh; GFE Medizintechnik GmbH) mesh were evaluated and compared. Animals were killed at 7, 21 and 90 days after implantation. The following parameters were evaluated to assess the host response to the mesh material: inflammation, vascularization, fibrosis, collagen formation, Ki67, and a foreign body reaction by granuloma formation (FBG).


Surgisis mesh produced more pronounced inflammation and cell proliferation, and less intense granuloma formation, as well as fibrosis, compared to the other two groups. When the infected materials were examined, we found signs of local infection to be more often present in Surgisis group of animals.


In the presence of bacterial contamination, no benefits were observed in the use of the Surgisis prosthesis over the use of TiMesh and Vypro II.


Hernia Rat model Infection Surgisis TiMesh Vypro II 


Author contributions

JCF designed the study and wrote the manuscript. DV designed the study and performed the experiments. NF performed the literature search and prepared data for analysis. TO performed the literature search and did the data analysis. ZM assisted in the experimental part and drafted the manuscript. BM performed the literature search and prepared data for analysis. IK drafted and revised the manuscript. PH did the statistical analysis and revised the manuscript with important intellectual content added. AM revised the manuscript and contributed important intellectual content. All the authors have read and approved the final manuscript as submitted.

Compliance with ethical standards

Conflict of interest

All the authors declare no conflict of interest.

Ethical approval

The study has been performed in accordance with the ethical standards of the Declaration of Helsinki.

informed consent

For this study informed consent is not required.


  1. 1.
    Le Huu Nho R, Mege D, Ouaïssi M et al (2012) Incidence and prevention of ventral incisional hernia. J Visc Surg 149:e3–e14. Google Scholar
  2. 2.
    Sugerman HJ, Kellum JM, Reines HD et al (1996) Greater risk of incisional hernia with morbidly obese than steroid-dependent patients and low recurrence with prefascial polypropylene mesh. Am J Surg 171:80–84. CrossRefGoogle Scholar
  3. 3.
    Cozad MJ, Grant DA, Bachman SL et al (2010) Materials characterization of explanted polypropylene, polyethylene terephthalate, and expanded polytetrafluoroethylene composites: spectral and thermal analysis. J Biomed Mater Res B Appl Biomater 94:455–462. Google Scholar
  4. 4.
    Elango S, Perumalsamy S, Ramachandran K, Vadodaria K (2017) Mesh materials and hernia repair. BioMedicine 7:16. CrossRefGoogle Scholar
  5. 5.
    Pérez-Köhler B, Bayon Y, Bellón JM (2016) Mesh infection and hernia repair: a review. Surg Infect (Larchmt) 17:124–137. CrossRefGoogle Scholar
  6. 6.
    Burger JWA, Luijendijk RW, Hop WCJ et al (2004) Long-term follow-up of a randomized controlled trial of suture versus mesh repair of incisional hernia. Ann Surg 240:578–583Google Scholar
  7. 7.
    Finan KR, Vick CC, Kiefe CI et al (2005) Predictors of wound infection in ventral hernia repair. Am J Surg 190:676–681. CrossRefGoogle Scholar
  8. 8.
    Sanchez VM, Abi-Haidar YE, Itani KMF (2011) Mesh infection in ventral incisional hernia repair: incidence, contributing factors, and treatment. Surg Infect (Larchmt) 12:205–210. CrossRefGoogle Scholar
  9. 9.
    Heniford BT, Park A, Ramshaw BJ, Voeller G (2003) Laparoscopic repair of ventral hernias: 9 years’ experience with 850 consecutive hernias. Ann Surg 238:391–400. Google Scholar
  10. 10.
    Mavros MN, Athanasiou S, Alexiou VG et al (2011) Risk factors for mesh-related infections after hernia repair surgery: a meta-analysis of cohort studies. World J Surg 35:2389–2398. CrossRefGoogle Scholar
  11. 11.
    Brown RH, Subramanian A, Hwang CS et al (2013) Comparison of infectious complications with synthetic mesh in ventral hernia repair. Am J Surg 205:182–187. CrossRefGoogle Scholar
  12. 12.
    Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ (2007) The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28:2314–2327. CrossRefGoogle Scholar
  13. 13.
    Chung L, Tse GH, O’Dwyer PJ (2014) Outcome of patients with chronic mesh infection following abdominal wall hernia repair. Hernia 18:701–704. CrossRefGoogle Scholar
  14. 14.
    Jezupovs A, Jezupors A, Mihelsons M (2006) The analysis of infection after polypropylene mesh repair of abdominal wall hernia. World J Surg 30:2270–2280. CrossRefGoogle Scholar
  15. 15.
    Parker DM, Armstrong PJ, Frizzi JD, North JH (2006) Porcine dermal collagen (Permacol) for abdominal wall reconstruction. Curr Surg 63:255–258. CrossRefGoogle Scholar
  16. 16.
    Liyanage SH, Purohit GS, Frye JNR, Giordano P (2006) Anterior abdominal wall reconstruction with a Permacol implant. J Plast Reconstr Aesthet Surg 59:553–555CrossRefGoogle Scholar
  17. 17.
    Langer C, Schwartz P, Krause P et al (2005) In-vitro study of the cellular response of human fibroblasts cultured on alloplastic hernia meshes. Influence of mesh material and structure. Chirurg 76:876–885. CrossRefGoogle Scholar
  18. 18.
    Bellón JM, Rodríguez M, García-Honduvilla N et al (2007) Peritoneal effects of prosthetic meshes used to repair abdominal wall defects: monitoring adhesions by sequential laparoscopy. J Laparoendosc Adv Surg Tech A 17:160–166. CrossRefGoogle Scholar
  19. 19.
    Scheidbach H, Tannapfel A, Schmidt U et al (2004) Influence of titanium coating on the biocompatibility of a heavyweight polypropylene mesh. An animal experimental model. Eur Surg Res 36:313–317. CrossRefGoogle Scholar
  20. 20.
    Junge K, Rosch R, Klinge U et al (2005) Titanium coating of a polypropylene mesh for hernia repair: effect on biocompatibilty. Hernia 9:115–119. CrossRefGoogle Scholar
  21. 21.
    Coda A, Lamberti R, Martorana S (2012) Classification of prosthetics used in hernia repair based on weight and biomaterial. Hernia 16:9–20. CrossRefGoogle Scholar
  22. 22.
    Schumpelick V, Klinge U, Rosch R, Junge K (2006) Light weight meshes in incisional hernia repair. J Minim Access Surg 2:117–123CrossRefGoogle Scholar
  23. 23.
    Bellón JM, Rodríguez M, García-Honduvilla N et al (2007) Partially absorbable meshes for hernia repair offer advantages over nonabsorbable meshes. Am J Surg 194:68–74. CrossRefGoogle Scholar
  24. 24.
    Smart NJ, Bryan N, Hunt J (2012) A scientific evidence for the efficacy of biologic implants for soft tissue reconstruction. Colorectal Dis 14(Suppl 3):1–6. CrossRefGoogle Scholar
  25. 25.
    Awad SS, Rao RK, Berger DH et al (2009) Microbiology of infected acellular dermal matrix (AlloDerm) in patients requiring complex abdominal closure after emergency surgery. Surg Infect (Larchmt) 10:79–84. CrossRefGoogle Scholar
  26. 26.
    Woodward J, Wright A (2010) Aspergillus infection of abdominal wall biologic mesh. Surg Infect (Larchmt) 11:405–406. CrossRefGoogle Scholar
  27. 27.
    Bueno-Lledó J, Torregrosa-Gallud A, Carreño-Saénz O et al (2017) Partial versus complete removal of the infected mesh after abdominal wall hernia repair. Am J Surg 214:47–52. CrossRefGoogle Scholar
  28. 28.
    Bueno-Lledó J, Torregrosa-Gallud A, Sala-Hernandez A et al (2017) Predictors of mesh infection and explantation after abdominal wall hernia repair. Am J Surg 213:50–57. CrossRefGoogle Scholar
  29. 29.
    Topart P, Ferrand L, Vandenbroucke F, Lozac’h P (2005) Laparoscopic ventral hernia repair with the Goretex Dualmesh: long-term results and review of the literature. Hernia 9:348–352. CrossRefGoogle Scholar
  30. 30.
    Gerullis H, Georgas E, Borós M et al (2014) Inflammatory reaction as determinant of foreign body reaction is an early and susceptible event after mesh implantation. Biomed Res Int 2014:1–6. CrossRefGoogle Scholar
  31. 31.
    Binnebösel M, Klink CD, Otto J et al (2010) Impact of mesh positioning on foreign body reaction and collagenous ingrowth in a rabbit model of open incisional hernia repair. Hernia 14:71–77. CrossRefGoogle Scholar
  32. 32.
    Holihan JL, Nguyen DH, Nguyen MT et al (2016) Mesh location in open ventral hernia repair: a systematic review and network meta-analysis. World J Surg 40:89–99. CrossRefGoogle Scholar
  33. 33.
    De Castro Brás LE, Shurey S, Sibbons PD (2012) Evaluation of crosslinked and non-crosslinked biologic prostheses for abdominal hernia repair. Hernia 16:77–89. CrossRefGoogle Scholar
  34. 34.
    Novitsky YW, Orenstein SB, Kreutzer DL (2014) Comparative analysis of histopathologic responses to implanted porcine biologic meshes. Hernia 18:713–721. CrossRefGoogle Scholar
  35. 35.
    Ditzel M, Deerenberg EB, Grotenhuis N et al (2013) Biologic meshes are not superior to synthetic meshes in ventral hernia repair: an experimental study with long-term follow-up evaluation. Surg Endosc 27:3654–3662. CrossRefGoogle Scholar
  36. 36.
    Pereira-lucena CG, Artigiani Neto R, de Rezende DT et al (2014) Early and late postoperative inflammatory and collagen deposition responses in three different meshes: an experimental study in rats. Hernia 18:563–570. Google Scholar
  37. 37.
    Horstmann R, Hellwig M, Classen C et al (2006) Impact of polypropylene amount on functional outcome and quality of life after inguinal hernia repair by the TAPP procedure using pure, mixed, and titanium-coated meshes. World J Surg 30:1742–1749. CrossRefGoogle Scholar
  38. 38.
    Arciola CR (2010) Host defense against implant infection: the ambivalent role of phagocytosis. Int J Artif Organs 33:565–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • J. Filipović-Čugura
    • 1
  • Z. Misir
    • 1
  • P. Hrabač
    • 2
  • T. Orešić
    • 3
  • D. Vidović
    • 1
  • B. Misir
    • 1
  • N. Filipović
    • 4
  • I. Kirac
    • 3
    Email author
  • A. Mijić
    • 1
  1. 1.Department of SurgerySestre Milosrdnice University Hospital CenterZagrebCroatia
  2. 2.Croatian Institute for Brain Research, University of ZagrebSchool of MedicineZagrebCroatia
  3. 3.University Hospital for Tumors, Sestre Milosrdnice University Hospital CenterZagrebCroatia
  4. 4.University of ZagrebSchool of MedicineZagrebCroatia

Personalised recommendations