Skip to main content

Advertisement

Log in

Effect of Drought and Heavy Precipitation on CH4 Emissions and δ13C–CH4 in a Northern Temperate Peatland

  • Original Article
  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Shifting precipitation patterns due to climate change may impact peatland methane (CH4) emissions, as precipitation affects water table level which largely controls CH4 cycling. To investigate the impact of variable precipitation on peatland CH4 emissions, we measured CH4 fluxes and their 13C isotope composition (δ13C–CH4) across two summers marked by drought (2020) and heavy precipitation (2021) in a northern temperate poor fen in New Hampshire, USA. Monthly variation in CH4 fluxes and δ13C–CH4 was larger than interannual variation and variation between peatland microforms. While the seasonal pattern of CH4 emissions was not significantly different between years, the magnitude of seasonal changes in CH4 flux and δ13C–CH4 provided insight regarding the processes controlling CH4 emissions. Between July and August 2020, water table levels dropped > 15 cm, CH4 emissions decreased by an order of magnitude, and δ13C–CH4 increased ~ 10‰, suggesting lower water table levels promoted CH4 oxidation and reduced emissions in late summer. Rainstorms in July 2021 caused flooding and stimulated high CH4 emissions, but the impact of increased water table levels due to heavy precipitation on CH4 fluxes was transient and did not have an apparent effect on emitted δ13C–CH4. While drought conditions had a clear impact on CH4 fluxes and δ13C–CH4, our results suggest rainstorms and subsequent flooding do not have a sustained impact on CH4 emissions from temperate peatlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data Availability

All CH4 emissions, δ13C–CH4, and field-based temperature and water table measurements presented in this manuscript are available at the Zenodo repository under “Methane Fluxes and 13C-CH4 from a Northern Temperate Peatland” (https://doi.org/10.5281/zenodo.7549224). Precipitation data used in this study were retrieved from the NOAA National Centers for Environmental Information (https://www.climate.gov/maps-data/dataset/past-weather-zip-code-data-table).

References

  • Avery GB, Shannon RD, White JR, Martens CS, Alperin MJ. 1999. Effect of seasonal changes in the pathways of methanogenesis on the δ 13 C values of pore water methane in a Michigan peatland. Global Biogeochem Cycles 13:475–484.

    Article  CAS  ADS  Google Scholar 

  • Barel JM, Moulia V, Hamard S, Sytiuk A, Jassey VEJ. 2021. Come rain, come shine: peatland carbon dynamics shift under extreme precipitation. Front Environ Sci 9:659953.

    Article  Google Scholar 

  • Bartoń, K. (2020). MuMIn: multi-model inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn

  • Bellisario LM, Bubier JL, Moore TR, Chanton JP. 1999. Controls on CH4 emissions from a northern peatland. Global Biogeochem Cycles 13:81–91.

    Article  CAS  ADS  Google Scholar 

  • Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F. 2009. Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339.

    Article  Google Scholar 

  • Bubier J, Costello A, Moore TR, Roulet NT, Savage K. 1993. Microtopography and methane flux in boreal peatlands, northern Ontario, Canada. Can J Bot 71:1056–1063.

    Article  Google Scholar 

  • Bubier JL, Moore TR, Bellisario L, Comer NT, Crill PM. 1995. Ecological controls on methane emissions from a Northern Peatland complex in the zone of discontinuous permafrost, Manitoba, Canada. Global Biogeochem Cycles 9:455–470.

    Article  CAS  ADS  Google Scholar 

  • Bubier J, Moore T, Savage K, Crill P. 2005. A comparison of methane flux in a boreal landscape between a dry and a wet year. Global Biogeochemical Cycles 19. http://doi.wiley.com/https://doi.org/10.1029/2004GB002351.

  • Camill P. 1999. Patterns of boreal permafrost peatland vegetation across environmental gradients sensitive to climate warming. Can J Bot 77:13.

    Google Scholar 

  • Carroll P, Crill P. 1997. Carbon balance of a temperate poor fen. Global Biogeochem Cycles 11:349–356.

    Article  CAS  ADS  Google Scholar 

  • Chang K-Y, Riley WJ, Crill PM, Grant RF, Saleska SR. 2020. Hysteretic temperature sensitivity of wetland CH4 fluxes explained by substrate availability and microbial activity. Biogeosciences 17:5849–5860.

    Article  CAS  ADS  Google Scholar 

  • Chanton JP. 2005. The effect of gas transport on the isotope signature of methane in wetlands. Organic Geochem 36:753–768.

    Article  CAS  ADS  Google Scholar 

  • Chasar L, Chanton JP, Glaser PH, Siegel DI. 2000. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake agassiz peatland complex. Ann Botany 86:655–663.

    Article  CAS  Google Scholar 

  • Christensen TR, Ekberg A, Ström L, Mastepanov M, Panikov N, Öquist M, Svensson BH, Nykänen H, Martikainen PJ, Oskarsson H. 2003. Factors controlling large scale variations in methane emissions from wetlands. Geophysical Research Letters 30. http://doi.wiley.com/https://doi.org/10.1029/2002GL016848.

  • Coleman DD, Risatti JB, Schoell M. 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochimica Et Cosmochimica Acta 45:1033–1037.

    Article  CAS  ADS  Google Scholar 

  • Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Madzar L, Sanner W. 1988. Methane flux from Minnesota Peatlands. Global Biogeochem Cycles 2:371–384.

    Article  CAS  ADS  Google Scholar 

  • Dorodnikov M, Marushchak M, Biasi C, Wilmking M. 2013. Effect of microtopography on isotopic composition of methane in porewater and efflux at a boreal peatland. Boreal Environ Res 18:269–279.

    CAS  Google Scholar 

  • Douville H, Raghavan K, Renwick J, Allan RP, Arias PA, Barlow M, Cerezo-Mota R, Cherchi A, Gan TY, Gergis J, Jiang D, Khan A, Pokam Mba W, Rosenfeld D, Tierney J, Zolina O, 2021. Water cycle changes. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds.)]. Cambridge University Press.

  • Dunfield P, Knowles R, Dumont R, Moore T. 1993. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biol Biochem 25:321–326.

    Article  CAS  Google Scholar 

  • Fisher RE, France JL, Lowry D, Lanoisellé M, Brownlow R, Pyle JA, Cain M, Warwick N, Skiba UM, Drewer J, Dinsmore KJ, Leeson SR, Bauguitte SJ-B, Wellpott A, O’Shea SJ, Allen G, Gallagher MW, Pitt J, Percival CJ, Bower K, George C, Hayman GD, Aalto T, Lohila A, Aurela M, Laurila T, Crill PM, McCalley CK, Nisbet EG. 2017. Measurement of the 13 C isotopic signature of methane emissions from northern European wetlands: Northern Wetland CH 4 Isotopic Signature. Global Biogeochem Cycles 31:605–623.

    Article  CAS  ADS  Google Scholar 

  • Frenzel P, Karofeld E. 2000. CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112.

    Article  CAS  Google Scholar 

  • Frolking S, Crill P. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochem Cycles 8:385–397.

    Article  CAS  ADS  Google Scholar 

  • Glaser PH, Chanton JP, Morin P, Rosenberry DO, Siegel DI, Ruud O, Chasar LI, Reeve AS. 2004. Surface deformations as indicators of deep ebullition fluxes in a large northern peatland. Global Biogeochemical Cycles 18.

  • Goodrich JP, Varner RK, Frolking S, Duncan BN, Crill PM. 2011. High-frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophysical Research Letters 38.

  • Greenup AL, Bradford MA, McNamara NP, Ineson P, Lee JA. 2000. The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland. Plant Soil 227:265–272.

    Article  CAS  Google Scholar 

  • Grolemund G, Wickham H. 2011. Dates and times made easy with lubridate. J Statist Softw 40:1–25.

    Article  Google Scholar 

  • Heffernan L, Cavaco MA, Bhatia MP, Estop-Aragonés C, Knorr K-H, Olefeldt D. 2022. High peatland methane emissions following permafrost thaw: enhanced acetoclastic methanogenesis during early successional stages. Biogeosciences 19:3051–3071.

    Article  CAS  ADS  Google Scholar 

  • Hodgkins SB, Tfaily MM, McCalley CK, Logan TA, Crill PM, Saleska SR, Rich VI, Chanton JP. 2014. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc NatL Acad Sci 111:5819–5824.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hopple AM, Wilson RM, Kolton M, Zalman CA, Chanton JP, Kostka J, Hanson PJ, Keller JK, Bridgham SD. 2020. Massive peatland carbon banks vulnerable to rising temperatures. Nat Commun 11:2373.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Hornibrook ERC, Bowes HL. 2007. Trophic status impacts both the magnitude and stable carbon isotope composition of methane flux from peatlands. Geophys Res Lett 34:L21401.

    Article  ADS  Google Scholar 

  • Huth V, Günther A, Jurasinski G, Glatzel S. 2013. The effect of an exceptionally wet summer on methane effluxes from a 15-year re-wetted fen in north-east Germany. Mires Peat 13:1–7.

    Google Scholar 

  • Huth V, Hoffmann M, Bereswill S, Zak D, Augustin J. 2018. The climate warming effect of a fen peat meadow with fluctuating water table is reduced by young alder trees. Mires and Peat: 1–18.

  • Joabsson A, Christensen TR, Wallén B. 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends Ecol Evol 14:385–388.

    Article  CAS  PubMed  Google Scholar 

  • Keeling CD. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochimica Et Cosmochimica Acta 13:322–334.

    Article  CAS  ADS  Google Scholar 

  • Keller JK, Bridgham SD. 2007. Pathways of anaerobic carbon cycling across an ombrotrophic-minerotrophic peatland gradient. Limnol Oceanogr 52:96–107.

    Article  CAS  ADS  Google Scholar 

  • Kelly CA, Dise NB, Martens CS. 1992. Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota peatlands. Global Biogeochem Cycles 6:263–269.

    Article  CAS  ADS  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ. 1999. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749.

    Article  CAS  Google Scholar 

  • Knorr KH, Glaser B, Blodau C. 2008a. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. Biogeosciences 5:1457–1473.

    Article  CAS  ADS  Google Scholar 

  • Knorr K-H, Oosterwoud MR, Blodau C. 2008b. Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biol Biochem 40:1781–1791.

    Article  CAS  Google Scholar 

  • Kolton M, Marks A, Wilson RM, Chanton JP, Kostka JE. 2019. Impact of warming on greenhouse gas production and microbial diversity in anoxic peat from a sphagnum-dominated bog (Grand Rapids, Minnesota, United States). Front Microbiol 10:870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn MA, Varner RK, Bastviken D, Crill P, MacIntyre S, Turetsky M, Walter Anthony K, McGuire AD, Olefeldt D. 2021. BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth Syst Sci Data 13:5151–5189.

    Article  ADS  Google Scholar 

  • Lenth RV. 2021. emmeans: estimated marginal means, aka least-squares means. R package version 1.5.4. https://CRAN.R-project.org/package=emmeans

  • Moore TR, Dalva M. 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. J Soil Sci 44:651–664.

    Article  CAS  Google Scholar 

  • National Centers for Environmental Information 2021. Climate data online - daily summaries [data file]. Retrieved from https://www.climate.gov/maps-data/dataset/past-weather-zip-code-data-table

  • Neumann RB, Moorberg CJ, Lundquist JD, Turner JC, Waldrop MP, McFarland JW, Euskirchen ES, Edgar CW, Turetsky MR. 2019. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys Res Lett 46:1393–1401.

    Article  ADS  Google Scholar 

  • Noyce GL, Varner RK, Bubier JL, Frolking S. 2014. Effect of Carex rostrata on seasonal and interannual variability in peatland methane emissions. J Geophys Res Biogeosci 119:24–34.

    Article  CAS  Google Scholar 

  • Olefeldt D, Euskirchen ES, Harden J, Kane E, McGuire AD, Waldrop MP, Turetsky MR. 2017. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability. Global Change Biol 23:2428–2440.

    Article  ADS  Google Scholar 

  • Olson DM, Griffis TJ, Noormets A, Kolka R, Chen J. 2013. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland J Geophys Res Biogeosci 118:226–38.

  • Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA. 2003. The application and interpretation of Keeling plots in terrestrial carbon cycle research, Global Biogeochem Cycles. 17.

  • Pedersen TL. 2020. Patchwork: the composer of plots. R package version 1.1.1. https://CRAN.R-project.org/package=patchwork

  • Peltoniemi K, Laiho R, Juottonen H, Bodrossy L, Kell DK, Minkkinen K, Mäkiranta P, Mehtätalo L, Penttilä T, Siljanen HMP, Tuittila E-S, Tuomivirta T, Fritze H. 2016. Responses of methanogenic and methanotrophic communities to warming in varying moisture regimes of two boreal fens. Soil Biol Biochem 97:144–156.

    Article  CAS  Google Scholar 

  • Perryman, C. R., McCalley, C. K., Ernakovich, J. G., Lamit, L. J., Shorter, J. H., Lilleskov, E., Varner, R. K. 2022. Microtopography matters: Belowground CH4 cycling regulated by differing microbial processes in peatland hummocks and lawns. J Geophys Res: Biogeosci, 127: e2022JG006948.

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2021. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–153, <URL: https://CRAN.R-project.org/package=nlme>

  • Popp TJ, Chanton JP, Whiting GJ, Grant N. 1999. Methane stable isotope distribution at a Carex dominated fen in north central Alberta. Global Biogeochem Cycles 13:1063–1077.

    Article  CAS  ADS  Google Scholar 

  • Radu DD, Duval TP. 2018. Impact of rainfall regime on methane flux from a cool temperate fen depends on vegetation cover. Ecol Eng 114:76–87.

    Article  Google Scholar 

  • Rey-Sanchez C, Bohrer G, Slater J, Li Y-F, Grau-Andrés R, Hao Y, Rich VI, Davies GM. 2019. The ratio of methanogens to methanotrophs and water-level dynamics drive methane transfer velocity in a temperate kettle-hole peat bog. Biogeosciences 16:3207–31.

    Article  CAS  ADS  Google Scholar 

  • Rinne J, Łakomiec P, Vestin P, White JD, Weslien P, Kelly J, Kljun N, Ström L, Klemedtsson L. 2022. Spatial and temporal variation in δ 13 C values of methane emitted from a hemiboreal mire: methanogenesis, methanotrophy, and hysteresis. Biogeosciences 19:4331–4349.

    Article  CAS  ADS  Google Scholar 

  • Roddy, S. 2014. Vegetation influences on the ebullition of methane in a temperate wetland. [Master’s thesis, University of New Hampshire]. UNH Scholars Repository. https://scholars.unh.edu/thesis/993/

  • Roulet N, Moore T, Bubier J, Lafleur P. 1992. Northern fens: methane flux and climatic change. Tellus B 44:100–105.

    Article  ADS  Google Scholar 

  • Santoni GW, Lee BH, Goodrich JP, Varner RK, Crill PM, McManus JB, Nelson DD, Zahniser MS, Wofsy SC. 2012. Mass fluxes and isofluxes of methane (CH4) at a New Hampshire fen measured by a continuous wave quantum cascade laser spectrometer. J Geophys Res Biogeosci 117.

  • Segers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51.

    Article  CAS  Google Scholar 

  • Strack M, Waddington JM, Tuittila E-S. 2004. Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochem Cycles 18.

  • Strack M, Kellner E, Waddington JM. 2005. Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Global Biogeochem Cycles 19.

  • Sundh I, Nilsson M, Granberg G, Svensson BH. 1994. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. Microb Ecol 27.

  • Treat CC, Bubier JL, Varner RK, Crill PM. 2007. Timescale dependence of environmental and plant-mediated controls on CH4 flux in a temperate fen. J Geophys Res Biogeosci 112:G01014.

    Article  ADS  Google Scholar 

  • Treat CC, Bloom AA, Marushchak ME. 2018. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems. Global Change Biol 24:3331–3343.

    Article  ADS  Google Scholar 

  • Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M. 2014. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biol 20:2183–2197.

    Article  ADS  Google Scholar 

  • Turetsky MR, Treat CC, Waldrop MP, Waddington JM, Harden JW, McGuire AD. 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J Geophys Res. 113:G00A10.

  • Waddington JM, Roulet NT, Swanson RV. 1996. Water table control of CH4 emission enhancement by vascular plants in boreal peatlands. J Geophys Res 101:22775–22785.

    Article  CAS  ADS  Google Scholar 

  • Waddington JM, Morris PJ, Kettridge N, Granath G, Thompson DK, Moore PA. 2015. Hydrological feedbacks in northern peatlands. Ecohydrology 8:113–127.

    Article  Google Scholar 

  • White JR, Shannon RD, Weltzin JF, Pastor J, Bridgham SD. 2008. Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study. J Geophys Res 113:G00A06.

  • Whiticar MJ. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161:291–314.

    Article  CAS  ADS  Google Scholar 

  • Whiting GJ, Chanton JP. 1993. Primary production control of methane emission from wetlands. Nature 364:794–795.

    Article  CAS  ADS  Google Scholar 

  • Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Wickham H, François R, Henry L, and Müller K, 2021. dplyr: a grammar of data manipulation. R package version 1.0.5. https://CRAN.R-project.org/package=dplyr

  • Wilson RM, Tfaily MM, Kolton M, Johnston ER, Petro C, Zalman CA, Hanson PJ, Heyman HM, Kyle JE, Hoyt DW, Eder EK, Purvine SO, Kolka RK, Sebestyen SD, Griffiths NA, Schadt CW, Keller JK, Bridgham SD, Chanton JP, Kostka JE. 2021. Soil metabolome response to whole-ecosystem warming at the spruce and peatland responses under changing environments experiment. Proc Natl Acad Sci USA 118:e2004192118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yrjälä K, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila E-S, Penttilä T, Minkkinen K, Laine J, Peltoniemi K, Fritze H. 2011. CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Global Change Biology 17:1311–1320.

    Article  ADS  Google Scholar 

  • Yu ZC. 2012. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the New Hampshire Space Grant Consortium Graduate Fellowship, the National Science Foundation MacroSystems Biology Program (EF-1241937), the National Aeronautics and Space Administration Interdisciplinary Research in Earth Science program (NNX17AK10G), the University of New Hampshire Dissertation Year Fellowship, and the University of New Hampshire Hamel Center for Undergraduate Research. The authors would also like to acknowledge Dr. Jack Dibb and Sallie Whitlow for allowing access to Sallie's Fen.

Funding

University of New Hampshire, National Science Foundation, EF-1241937, National Aeronautics and Space Administration, NNX17AK10G, New Hampshire Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarice R. Perryman.

Additional information

Author Contributions: CRP, CKM, and RKV conceived of the study design. RKV and CRP secured funding for the research. CKM, JS, and AP made significant contributions to the stable isotope analytical methods. CRP, AP, NW, AD, and RKV conducted fieldwork and laboratory analyses. CRP analyzed the data and wrote the manuscript. All other authors provided feedback on draft manuscript materials.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 173 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perryman, C.R., McCalley, C.K., Shorter, J.H. et al. Effect of Drought and Heavy Precipitation on CH4 Emissions and δ13C–CH4 in a Northern Temperate Peatland. Ecosystems 27, 1–18 (2024). https://doi.org/10.1007/s10021-023-00868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00868-8

Keywords

Navigation