Skip to main content
Log in

Local and Regional Effects of Land-Use Intensity on Aboveground Biomass and Tree Diversity in Tropical Montane Cloud Forests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The quantity and spatial patterns of aboveground biomass (AGB) are expected to correlate with ecosystem structure and biodiversity across biomes. However, the local and regional variations in the strength of such relationships remain poorly understood partly due to the influence of ecosystem disturbances, such as land-use change. Here, we quantified AGB in tropical montane cloud forest (TMCF) in southern Mexico and analyzed its distribution patterns at local and regional scales. Specifically, we investigated how land use and environmental factors (that is, topography and climate) influence AGB spatial patterns and the relationship between forest structure, AGB, and tree species diversity across forests with different levels of disturbance, using 160 plots from the Mexican National Forest Inventory (FI) database. Our results show that AGB (averaging 137 Mg ha−1) is strongly influenced by variations in forest structure such as stand basal area and the density of large trees, with a weak but positive relation with tree species diversity. AGB increased with elevation and slope and decreased with very high levels of precipitation and land-use intensity, suggesting that spatial variation in AGB across the region can be best predicted by the interactive effects of land use and environmental factors, with land use having a larger role. Our results challenge general assumptions about the structural and compositional properties of montane forest ecosystems and emphasize the need to explicitly include interactions between environmental and human drivers when analyzing changes in AGB and devising sustainable management plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Data and code are available on Github and archived on Zenodo at https://doi.org/10.5281/zenodo.7272469

References

  • Ali A, Lin SL, He JK, Kong FM, Yu JH, Jiang HS. 2019. Climatic Water Availability Is the Main Limiting Factor of Biotic Attributes across Large-Scale Elevational Gradients in Tropical Forests. Science of the Total Environment 647:1211–1221.

    CAS  PubMed  Google Scholar 

  • Alrutz M, Gómez DJA, Schneidewind U, Krömer T, Kreft H. 2021. Forest structural parameters and aboveground biomass in old-growth and secondary forests along an elevational gradient in Mexico. Botanical Sciences 100(1):67–85.

    Google Scholar 

  • Álvarez-Arteaga G, García Calderón N, Krasilnikov P, García-Oliva F. 2013. Almacenes de Carbono En Bosques Montanos de Niebla de La Sierra Norte de Oaxaca, México. Agrociencia 47:171–180.

    Google Scholar 

  • Álvarez-Dávila E, Cayuela L, González-Caro S, Aldana AM, Stevenson PR, Phillips O, Cogollo A, et al. 2017. Forest Biomass Density across Large Climate Gradients in Northern South America Is Related to Water Availability but Not with Temperature. PLoS ONE 12(3):1–16.

    Google Scholar 

  • Aragón S, Salinas N, Nina-Quispe A, HuamanQquellon V, RaymePaucar G, Huaman W, Porroa PC, et al. 2021. Aboveground Biomass in Secondary Montane Forests in Peru: Slow Carbon Recovery in Agroforestry Legacies. Global Ecology and Conservation 28:e01696.

    Google Scholar 

  • Arasa-Gisbert R, Vayreda J, Román-Cuesta RM, Villela SA, Mayorga R, Retana J. 2018. Forest Diversity Plays a Key Role in Determining the Stand Carbon Stocks of Mexican Forests. Forest Ecology and Management 415–416:160–171.

    Google Scholar 

  • Asner GP, Hughes RF, Varga TA, Knapp DE, Kennedy-Bowdoin T. 2009. Environmental and Biotic Controls over Aboveground Biomass throughout a Tropical Rain Forest. Ecosystems 12(2):261–278.

    Google Scholar 

  • Asner GP, Anderson CB, Martin RE, Knapp DE, Tupayachi R, Sinca F, Malhi Y. 2014. Landscape-Scale Changes in Forest Structure and Functional Traits along an Andes-to-Amazon Elevation Gradient. Biogeosciences 11(3):843–856.

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1):1–48.

    Google Scholar 

  • Bojinski S, Verstraete M, Peterson TC, Richter C, Simmons A, Michael Z. 2014. The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy. Bulletin of the American Meteorological Society 95(9):1431–1443.

    Google Scholar 

  • Bonan GB. 2008. Forests and Climate Change: Climate Benefits of Forests. Science 320:1444–1449.

    CAS  PubMed  Google Scholar 

  • Bordin KM, Esquivel-Muelbert A, Scarton Bergamin R, Klipel J, Picolotto RC, Araújo Frangipani M, Zanini KJ and others 2021. Climate and large-sized trees, but not diversity, drive above-ground biomass in subtropical forests. Forest Ecology and Management 490.

  • Bray DB, Merino-Pérez L, Negreros-Castillo P, Segura-Warnholtz G, Torres-Rojo JM, Vester HFM. 2003. Mexico’s Community-Managed Forests as a Global Model for Sustainable Landscapes. Conservation Biology 17(3):672–677.

    Google Scholar 

  • Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN. 2011. Tropical Montane Cloud Forests: State of Knowledge and Sustainability Perspectives in a Changing World. Bruijnzeel LA, Scatena FN, Hamilton LS, editors. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge: Cambridge University Press, p 691–740.

  • Burt A, Calders K, Cuni-Sanchez A, Gómez-Dans J, Lewis P, Lewis SL, Malhi Y, Phillips OL, Disney M. 2020. Assessment of Bias in Pan-Tropical Biomass Predictions. Frontiers in Forests and Global Change 3.

  • Calderon-Aguilera LE, Rivera-Monroy VH, Porter-Bolland L, Martínez-Yrízar A, Ladah LB, Martínez-Ramos M, Alcocer J, et al. 2012. An Assessment of Natural and Human Disturbance Effects on Mexican Ecosystems: Current Trends and Research Gaps. Biodiversity and Conservation 21(3):589–617.

    Google Scholar 

  • Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O’Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98:3.

    Google Scholar 

  • Cavanaugh KC, Stephen Gosnell J, Davis SL, Ahumada J, Boundja P, Clark DB, Mugerwa B, et al. 2014. Carbon Storage in Tropical Forests Correlates with Taxonomic Diversity and Functional Dominance on a Global Scale. Global Ecology and Biogeography 23(5):563–573.

    Google Scholar 

  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error Propagation and Sealing for Tropical Forest Biomass Estimates. Philosophical Transactions of the Royal Society B: Biological Sciences 359(1443):409–420.

    Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20(10):3177–3190.

    PubMed  Google Scholar 

  • Chazdon RL. 2003. Tropical Forest Recovery: Legacies of Human Impact and Natural Disturbances. Perspectives in Plant Ecology, Evolution and Systematics 6(1–2):51–71.

    Google Scholar 

  • Chazdon RL, Broadbent EB, Rozendaal DMA, Bongers F, Almeyda Zambrano AM, Aide TM, Balvanera P, et al. 2016. Carbon Sequestration Potential of Second-Growth Forest Regeneration in the Latin American Tropics. Science Advances. https://doi.org/10.1126/sciadv.1501639.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Taylor AR, Reich PB, Hisano M, Chen HYH, Chang SX. 2023. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 628:94–101.

    Google Scholar 

  • Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin A, Butt N, et al. 2013. Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology 101(5):1214–1224.

    Google Scholar 

  • Clark DB, Hurtado J, Saatchi SS. 2015. Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PLoS ONE 10(4):1–18.

    Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, et al. 2011. Relationships among Net Primary Productivity, Nutrients and Climate in Tropical Rain Forest: A Pan-Tropical Analysis. Ecology Letters 14(9):939–947.

    PubMed  Google Scholar 

  • Cook-Patton SC, Leavitt SM, Gibbs D, Harris NL, Lister K, Anderson-Teixeira KJ, Briggs RD, et al. 2020. Mapping Carbon Accumulation Potential from Global Natural Forest Regrowth. Nature 585(7826):545–550.

    CAS  PubMed  Google Scholar 

  • Cuni-Sanchez A, Pfeifer M, Marchant R, Calders K, Sørensen CL, Pompeu PV, Lewis SL, Burgess ND. 2017. New Insights on above Ground Biomass and Forest Attributes in Tropical Montane Forests. Forest Ecology and Management 399:235–246.

    Google Scholar 

  • Cuni-Sanchez A, Sullivan MJP, Platts PJ, Lewis SL, Marchant R, Imani G. 2021. High Above-Ground Carbon Stock of African Tropical Montane Forests. Nature 596.

  • [CONAFOR] Comisión Nacional Forestal. 2017. Inventario Nacional Forestal y de Suelos. Procedimientos de muestreo. Zapopan, Jalisco, México: CONAFOR. 311p.

  • [CONAFOR] Comisión Nacional Forestal. 2018. Inventario Nacional Forestal y de Suelos – Informe de Resultados 2009–2014. Zapopan, Jalisco, México: CONAFOR. 200p.

  • de la Cruz-Amo L, Bañares-de-Dios G, Cala V, Granzow-de la Cerda I, Espinosa CI, Ledo A, Salinas N, Macía MJ, Cayuela L. 2020. Trade-Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Frontiers in Plant Science 11:106.

    PubMed  PubMed Central  Google Scholar 

  • del Castillo RF. 2015. A Conceptual Framework to Describe the Ecology of Fragmented Landscapes and Implications for Conservation and Management. Ecological Applications 25(6):1447–1455.

    PubMed  Google Scholar 

  • Duarte-Guardia S, Peri PL, Amelung W, et al. 2019. Better estimates of soil carbon from geographical data: a revised global approach. Mitigation and Adaptation Strategies for Global Change 24:355–372.

    Google Scholar 

  • Erb KH, Haberl H, Jepsen MR, Kuemmerle T, Lindner M, Müller D, Reenberg A. 2013. A Conceptual Framework for Analysing and Measuring Land-Use Intensity. Current Opinion in Environmental Sustainability 5(5):464–470.

    PubMed  PubMed Central  Google Scholar 

  • Erb KH, Kastner T, Plutzar C, Bais ALS, Carvalhais N, Fetzel T, Gingrich S, et al. 2018. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 553(7686):73–76.

    CAS  PubMed  Google Scholar 

  • Fahey TJ, Sherman RE, Tanner EVJ. 2016. Tropical Montane Cloud Forest: Environmental Drivers of Vegetation Structure and Ecosystem Function. Journal of Tropical Ecology 32(5):355–367.

    Google Scholar 

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M and others. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45 (2).

  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A, Lopez-Gonzalez G, et al. 2012. Tree Height Integrated into Pantropical Forest Biomass Estimates. Journal of Geophysical Research: Biogeosciences 9(8):3381–3403.

    Google Scholar 

  • Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology 37(12):4302–4315.

    Google Scholar 

  • Fisher JB, Malhi Y, Cuba Torres I, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huaraca Huasco W. 2013. Nutrient Limitation in Rainforests and Cloud Forests along a 3000-m Elevation Gradient in the Peruvian Andes. Oecologia 172(3):889–902.

    PubMed  Google Scholar 

  • Gibbs HK, Brown S, Niles JO, Foley JA. 2007. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality. Environmental Research Letters 2:4.

    Google Scholar 

  • Girardin CAJ, Malhi Y, Aragão LEOC, Mamani M, HuaracaHuasco W, Durand L, Feeley KJ, et al. 2010. Net Primary Productivity Allocation and Cycling of Carbon along a Tropical Forest Elevational Transect in the Peruvian Andes. Global Change Biology 16:3176–3192.

    Google Scholar 

  • Girardin CAJ, Farfan-Rios W, Garcia K, Feeley KJ, Jørgensen PM, Murakami AA, Cayola Pérez L, et al. 2014. Spatial Patterns of Above-Ground Structure, Biomass and Composition in a Network of Six Andean Elevation Transects. Plant Ecology and Diversity 7(1–2):161–171.

    Google Scholar 

  • Gotsch SG, Asbjornsen H, Goldsmith GR. 2016. Plant Carbon and Water Fluxes in Tropical Montane Cloud Forests. Journal of Tropical Ecology 32(5):404–420.

    Google Scholar 

  • Grantham HS, Duncan A, Evans TD, Jones KR, Beyer HL, Schuster R, Walston J, et al. 2020. Anthropogenic Modification of Forests Means Only 40% of Remaining Forests Have High Ecosystem Integrity. Nature Communications 11(1):1–10.

    Google Scholar 

  • Heinrich VHA, Vancutsem C, Dalagnol R, Rosan TM, Fawcett D, Silva-Junior CHL, Cassol HLG, Achard F, Jucker T, Silva CA. 2023. The carbon sink of secondary and degraded humid tropical forests. Nature 615:436–442.

    CAS  PubMed  Google Scholar 

  • Hijmans, RJ. 2021. raster: Geographic Data Analysis and Modeling. R package version 3.6–3.

  • Hofhansl F, Schnecker J, Singer G, Wanek W. 2015. New Insights into Mechanisms Driving Carbon Allocation in Tropical Forests. New Phytologist 205(1):137–146.

    PubMed  Google Scholar 

  • Houghton RA, Hall F, Goetz SJ. 2009. Importance of Biomass in the Global Carbon Cycle. Journal of Geophysical Research: Biogeosciences 114(3):1–13.

    Google Scholar 

  • Hsieh TC, Chao MA. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7(12):1451–1456.

    Google Scholar 

  • Jakovac CC, Junqueira AB, Crouzeilles R, Peña-Claros M, Mesquita RCG, Bongers F. 2021. The role of land-use history in driving successional pathways and its implications for the restoration of tropical forests. Biological Reviews 96(4):1114–1134.

    PubMed  Google Scholar 

  • Kauffman J, Boone R, Hughes F, Heider C. 2009. Carbon Pool and Biomass Dynamics Associated with Deforestation, Land Use, and Agricultural Abandonment in the Neotropics. Ecological Applications 19(5):1211–1222.

    PubMed  Google Scholar 

  • Kothandaraman S, Dar JA, Sundarapandian S, Dayanandan S, Khan ML. 2020. Ecosystem-Level Carbon Storage and Its Links to Diversity, Structural and Environmental Drivers in Tropical Forests of Western Ghats. India. Scientific Reports 10(1):13444.

    CAS  PubMed  Google Scholar 

  • Leija-Loredo EG, Pavón NP, Sánchez-González A, Rodriguez-Laguna R, Ángeles-Pérez G. 2018. Land Cover Change and Carbon Stores in a Tropical Montane Cloud Forest in the Sierra Madre Oriental. Mexico. Journal of Mountain Science 15(10):2136–2147.

    Google Scholar 

  • Lewis SL, Sonké B, Sunderland T, Begne SK, Lopez-Gonzalez G, van der Heijden GMF, Phillips OL, et al. 2013. Above-Ground Biomass and Structure of 260 African Tropical Forests. Philosophical Transactions of the Royal Society B: Biological Sciences 368(1625):20120295.

    Google Scholar 

  • Leyva-Pablo T, de León-González, Etchevers-Barra JD, Cortés-Pérez M, Santiago-García W, Ponce Mendoza A, Fuentes-Ponce MH. 2021. Carbon storage in forests with community forest management. Madera y bosques 27(4).

  • Loh HY, James D, Ioki K, Wong WVC, Tsuyuki S, Phua M-H. 2020. Aboveground Biomass Changes in Tropical Montane Forest of Northern Borneo Estimated Using Spaceborne and Airborne Digital Elevation Data. Remote Sensing 12:3677.

    Google Scholar 

  • Longo M, Keller M, dos-Santos MN, Leitold V, Pinagé, Baccini A, Saatchi S, Nogueria EM, Batistella M, Morton DC. 2016. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles 30(11):1639–1660.

    CAS  Google Scholar 

  • Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P. 2014. Tropical Forests in the Anthropocene. Annual Review of Environment and Resources 39:125–159.

    Google Scholar 

  • Malhi Y, Girardin CA, Goldsmith GR, Doughty CE, Salinas N, Metcalfe DB, HuaracaHuasco W, Silva-Espejo JE, Anguilla-Pasquell Jd, Amézquita FF, et al. 2017. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist 214:1019–1032.

    CAS  PubMed  Google Scholar 

  • Marshall AR, Willcock S, Platts PJ, Lovett JC, Balmford A, Burgess ND, Latham JE, et al. 2012. Measuring and Modeling Above-Ground Carbon and Tree Allometry along a Tropical Elevation Gradient. Biological Conservation 154:20–33.

    Google Scholar 

  • Martinuzzi S, Cook BD, Helmer EH, Keller M, Locke DH, Marcano-Vega Uriarte M, Morton DC. 2022. Patterns and controls on island-wide aboveground biomass accumulation in second-growth forests of Puerto Rico. Biotropica. 54(5):1146–1159.

    Google Scholar 

  • Matos FAR, Magnago LFS, Miranda CAC, Menezes LFT, Gasteur M, Safar NVH, Schaefer CEGR, da Silva MP, Simonelli M, et al. 2020. Secondary forest fragments offer important carbon and biodiversity cobenefits. Global Change Biology. 26:509–522.

    PubMed  Google Scholar 

  • Meave JA, Soto MA, Calvo-Irabien LM, Paz-Hernández H, Valencia-Avalos A. 1992. Sinecological Analysis of the Montane Rain Forest of Omiltemi, Guerrero. Botanical Sciences 52:31–77.

    Google Scholar 

  • Mejía NR, Meave JA, Ruiz CA. 2004. Análisis estructural de un bosque mesófilo de montaña en el extremo oriental de la Sierra Madre Del Sur (Oaxaca), México. Boletín De La Sociedad Botánica De México 74:13–19.

    Google Scholar 

  • Melito M, Metzger JP, de Oliveira AA. 2018. Landscape-Level Effects on Aboveground Biomass of Tropical Forests: A Conceptual Framework. Global Change Biology 24(2):597–607.

    PubMed  Google Scholar 

  • Mendoza-Ponce A, Corona-Núñez R, Kraxner F, Leduc S, Patrizio P. 2018. Identifying Effects of Land Use Cover Changes and Climate Change on Terrestrial Ecosystems and Carbon Stocks in Mexico. Global Environmental Change 53:12–23.

    Google Scholar 

  • Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C. 2008. Altitudinal Changes in Stand Structure and Biomass Allocation of Tropical Mountain Forests in Relation to Microclimate and Soil Chemistry. Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R, editors. Gradients in a Tropical Mountain Ecosystem of Ecuador. Ecological Studies, vol 198. Springer, Berlin, Heidelberg. p229–42.

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, et al. 2007. A Large and Persistent Carbon Sink in the World’s Forests. Science 317:4.

    Google Scholar 

  • Peña MA, Feeley KJ, Duque A. 2018. Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecology 219:1481–1492.

    Google Scholar 

  • Peters MK, Hemp A, Appelhans T, et al. 2019. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568:88–92.

    CAS  PubMed  Google Scholar 

  • Phillips J, Ramirez S, Wayson C, Duque A. 2019. Differences in carbon stocks along an elevational gradient in tropical mountain forests of Colombia. Biotropica 51:4.

    Google Scholar 

  • Phua M-H, Ling Z-Y, Coomes DA, Wong W, Korom A, Tsuyuki S, Ioki K, Hirata Y, Saito H, Takao G. 2017. Seeing trees from space: above-ground biomass estimates of intact and degraded montane rainforests from high-resolution optical imagery. iForest 10:625–634.

    Google Scholar 

  • Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J, Ascarrunz N, et al. 2015. Diversity Enhances Carbon Storage in Tropical Forests. Global Ecology and Biogeography 24(11):1314–1328.

    Google Scholar 

  • Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, Boukili V, et al. 2016. Biomass Resilience of Neotropical Secondary Forests. Nature 530(7589):211–214.

    CAS  PubMed  Google Scholar 

  • Poorter L, Craven D, Jakovac CC, Van der Sande MT, Amissah L, Bongers F, Chazdon R, Farrior CE, Kambach S, et al. 2021. Multidimensional tropical forest recovery. Science 374:1370–1376.

    CAS  PubMed  Google Scholar 

  • Qin Y, Xiao X, Wigneron JP, Ciais P, Brandt M, Fan L, Xiaojun Li, Crowell S, Wu X, Doughty R. 2021. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change 11:442–448.

    Google Scholar 

  • Quadri P, Silva LCR, Zavaleta ES. 2021. Climate-Induced Reversal of Tree Growth Patterns at a Tropical Treeline. Science Advances 7 (22).

  • R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM. 2006. Temperature influences carbon accumulation in moist tropical forests. Ecology 87(1):76–87.

    PubMed  Google Scholar 

  • Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B. 2017. BIOMASS: An R Package for Estimating Aboveground Biomass and its Uncertainty in Tropical Forests. Methods in Ecology and Evolution 8(9):1163–1167.

    Google Scholar 

  • Requena Suarez D, Rozendaal DMA, de Sy V, Phillips OL, Alvarez-Dávila E, Anderson-Teixeira K, Araujo-Murakami A, et al. 2019. Estimating Aboveground Net Biomass Change for Tropical and Subtropical Forests: Refinement of IPCC Default Rates Using Forest Plot Data. Global Change Biology 25(11):3609–3624.

    PubMed  PubMed Central  Google Scholar 

  • Roswell M, Dushoff J, Winfree R. 2021. A conceptual guide to measuring species diversity. Oikos 130(3):321–338.

    Google Scholar 

  • Rozendaal DMA, Chazdon RL, Arreola-Villa F, Balvanera P, Bentos TV, Dupuy JM, Hernandez-Stefanoni JL, Jakovac CC, Lebrija-Trejos EE, Lohbeck M, et al. 2017. Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. Ecosystems 20:340–353.

    Google Scholar 

  • Rozendaal DMA, Requena Suarez D, De Sy V, Avitabile V, Carter S, Yao CYA, Alvarez-Davila E, Anderson-Teixeira K, Araujo-Murakami A, Arroyo L and others. 2022. Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests. Environmental Research Letters 17(1).

  • Ruiz-Jiménez CA, Meave JA, Contreras-Jiménez JL. 1999. El Bosque Mesófilo de La Región de Puerto Soledad (Oaxaca), México: Análisis Estructural. Botanical Sciences 65:23–37.

    Google Scholar 

  • Säfken B, Rügamer D, Kneib T, Greven S. 2021. Conditional Model Selection in Mixed-Effects Models with cAIC4. Journal of Statistical Software 99(8):1–30.

    Google Scholar 

  • Santoro M, Cartus O, Carvalhais N, Rozendaal DMA, Avitabile V, Araza A, De Bruin S, et al. 2021. The Global Forest Above-Ground Biomass Pool for 2010 Estimated from High-Resolution Satellite Observations. Earth System Science Data 13(8):3927–3950.

    Google Scholar 

  • Selmants PC, Litton CM, Giardina CP, Asner GP. 2014. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests. Global Change Biology 20:2927–2937.

    PubMed  Google Scholar 

  • Sheil D, Ladd B, Silva LCR, Laffan S, Van Heist M. 2016. How Are Soil Carbon and Tropical Biodiversity Related? Environmental Conservation 1–11.

  • Silva LCR, Lambers H. 2021. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil 461:5–27.

    Google Scholar 

  • Silver WL, Ostertag R, Lugo AE. 2000. The Potential for Carbon Sequestration Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands. Restoration Ecology 8(4):394–407.

    Google Scholar 

  • Slik JWF, Aiba SI, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, et al. 2010. Environmental Correlates of Tree Biomass, Basal Area, Wood Specific Gravity and Stem Density Gradients in Borneo’s Tropical Forests. Global Ecology and Biogeography 19(1):50–60.

    Google Scholar 

  • Spracklen DV, Righelato R. 2014. Tropical Montane Forests Are a Larger than Expected Global Carbon Store. Biogeosciences 11(10):2741–2754.

    CAS  Google Scholar 

  • Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK, Chave J, et al. 2017. Diversity and Carbon Storage across the Tropical Forest Biome. Scientific Reports 7:1–12.

    Google Scholar 

  • Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Cuni Sanchez A, Ewango CEN, Hubau W, Marimon B, et al. 2020. Long-term thermal sensitivity of Earth’s tropical forests. Science 368:869–874.

    CAS  PubMed  Google Scholar 

  • Ticehurst C, Held A, Phinn S. 2004. Integrating JERS-1 Imaging Radar and Elevation Models for Mapping Tropical Vegetation Communities in Far North Queensland. Australia. Photogrammetric Engineering and Remote Sensing 70(11):1259–1266.

    Google Scholar 

  • Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N. 2011. Tropical Montane Cloud Forests: Current Threats and Opportunities for Their Conservation and Sustainable Management in Mexico. Journal of Environmental Management 92(3):974–981.

    PubMed  Google Scholar 

  • van Breugel M, Ransijn J, Craven D, Bongers F, Hall JS. 2011. Estimating Carbon Stock in Secondary Forests: Decisions and Uncertainties Associated with Allometric Biomass Models. Forest Ecology and Management 262(8):1648–1657.

    Google Scholar 

  • Vancutsem C, Achard F, Pekel J, Vielledent G, Carboni S, Simonetti D, Gallego J, Aragao LEOC, Nasi R. 2021. ,Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances 7(10).

  • Velasco-Murguía A, del Castillo RF, Rös M, Rivera-García R. 2021. Successional Pathways of Post-Milpa Fallows in Oaxaca. Mexico. Forest Ecology and Management 500:119644.

    Google Scholar 

  • Vizcaíno-Bravo Q, Williams-Linera G, Asbjornsen H. 2020. Biodiversity and Carbon Storage Are Correlated along a Land Use Intensity Gradient in a Tropical Montane Forest Watershed, Mexico. Basic and Applied Ecology 44:24–34.

    Google Scholar 

  • Wood S, Scheipl F. 2017. gamm4: Generalized Additive Mixed Models using ‘mgcv’and ‘lme4’. R package version 0.2–5.

  • Zhu Z-X, Nizamani MM, Sahu SK, Kunasingam A, Wang H-F. 2019. Tree abundance, richness, and phylogenetic diversity along an elevation gradient in the tropical forest of Diaoluo Mountain in Hainan. China. Acta Oecologica 101:103481.

    Google Scholar 

  • Zomer RJ, Xu J, Trabucco A. 2022. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data 9:409.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the Mexican National System of Forest Monitoring (Sistema Nacional de Monitoreo Forestal) at CONAFOR for their assistance with the Forest Inventory database. This project was developed as part of AU’s doctoral dissertation with support from CONACyT scholarship Becas de posgrado en el extranjero (709969) and the University of Oregon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Uscanga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author Contribution: AU and LS designed the study, AU performed research, AU and PJB analyzed data, AU wrote the paper, and all authors edited the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 576 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uscanga, A., Bartlein, P.J. & Silva, L.C.R. Local and Regional Effects of Land-Use Intensity on Aboveground Biomass and Tree Diversity in Tropical Montane Cloud Forests. Ecosystems 26, 1734–1752 (2023). https://doi.org/10.1007/s10021-023-00861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00861-1

Keywords

Navigation