Skip to main content

Advertisement

Log in

Temperate Primary Forest Biomass Accumulates over Centuries-Long Time Frames

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Primary forests provide critical climate regulation functions through the capture and storage of carbon in biomass reservoirs. The capacity of primary forests to sustain biomass levels and the possible consequences of warming-induced increases in extreme disturbances are unresolved questions. We investigated the drivers of biomass accumulation in European primary mountain forests in the Carpathians. We used inventory datasets from a continental-scale survey of remnant primary forests to quantify levels of aboveground live and dead biomass across mixed beech and spruce forest types. We formulated nonlinear regression models to estimate the effects of abiotic and biotic factors, including plot-level disturbance history and tree age using dendrochronological methods. Our analyses show that biomass stocks are comparable with stocks present in other primary forests of temperate regions. Highest mean total biomass in mixed beech forests was in southern landscapes (491 ± 81 Mg ha−1) and western for spruce forests (388 ± 106 Mg ha−1). Forests maintained positive biomass accumulation rates over centuries-long time frames, mean plot-level age peaking at ~ 225 years. We demonstrate that primary forests continue to function as carbon sinks at older ages. Preserving the integrity of unmanaged forests serves as an important climate mitigation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Data Availability

Data available via https://www.remoteforests.org/—URL includes access to site locations included in the study, with stand-level description.

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5(1):1–2.

    Google Scholar 

  • Akaike H. 1987. Factor analysis and AIC. In: Selected papers of Hirotugu Akaike. New York, NY: Springer. pp 371–86.

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg ET, Gonzalez P. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684.

    Google Scholar 

  • Álvarez-Dávila E, Cayuela L, González-Caro S, Aldana AM, Stevenson PR, Phillips O, Cogollo Á, Peñuela MC, Von Hildebrand P, Jiménez E, Melo O. 2017. Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PloS One 12(3):e0171072.

    PubMed  PubMed Central  Google Scholar 

  • Anderson DR, Burnham KP, White GC. 1994. AIC model selection in overdispersed capture-recapture data. Ecology 75(6):1780–1793.

    Google Scholar 

  • Bartkowicz L, Paluch J. 2019. Co-occurrence of shade-tolerant and light-adapted tree species in uneven-aged deciduous forests of southern Poland. Eur J for Res 138(1):15–30.

    CAS  Google Scholar 

  • Bormann FH, Likens GE. 1979. Catastrophic disturbance and the steady state in northern hardwood forests: a new look at the role of disturbance in the development of forest ecosystems suggests important implications for land-use policies. Am Sci 67(6):660–669.

    Google Scholar 

  • Breheny P, Burchett W. 2017. Visualization of regression models using visreg. R J 9(2):56.

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35.

    Google Scholar 

  • Čada V, Trotsiuk V, Janda P, Mikoláš M, Bače R, Nagel TA, Morrissey RC, Tepley AJ, Vostarek O, Begović K, Chaskovskyy O. 2020. Quantifying natural disturbances using a large-scale dendrochronological reconstruction to guide forest management. Ecol Appl 30(8):e02189.

    PubMed  Google Scholar 

  • Day ME, Greenwood MS, White AS. 2001. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21(16):1195–1204.

    CAS  PubMed  Google Scholar 

  • Duncan RP. 1989. An evaluation of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides).

  • FAO. 2020. Global forest resources assessment 2020: main report. Rome: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca9825en

    Book  Google Scholar 

  • Frelich LE, Lorimer CG. 1991. Natural disturbance regimes in hemlock-hardwood forests of the upper Great Lakes region. Ecol Monogr 61(2):145–64.

    Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA, Luyssaert S, Campioli M, Sardans J, Estiarte M, Peñuelas J. 2014. Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems. Trees 28:597–611.

    Google Scholar 

  • Forrester DI, Tachauer IH, Annighoefer P, Barbeito I, Pretzsch H, Ruiz-Peinado R, Stark H, Vacchiano G, Zlatanov T, Chakraborty T, Saha S. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For Ecol Manag 396:160–175.

    Google Scholar 

  • Foster JR, Finley AO, D’Amato AW, Bradford JB, Banerjee S. 2016. Predicting tree biomass growth in the temperate–boreal ecotone: Is tree size, age, competition, or climate response most important? Glob Change Biol 22(6):2138–2151.

    Google Scholar 

  • Frankovič M, Janda P, Mikoláš M, Čada V, Kozák D, Pettit JL, Nagel TA, Buechling A, Matula R, Trotsiuk V, Gloor R. 2021. Natural dynamics of temperate mountain beech-dominated primary forests in Central Europe. For Ecol Manag 479:118522.

    Google Scholar 

  • Gower ST, McMurtrie RE, Murty D. 1996. Aboveground net primary production decline with stand age: potential causes. Trends Ecol Evol 11(9):378–382.

    CAS  PubMed  Google Scholar 

  • Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111(982):1169–1194.

    Google Scholar 

  • Hargreaves GH, Samani ZA. 1985. Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99.

    Google Scholar 

  • Harmon ME, Woodall CW, Fasth B, Sexton J. 2008. Woody detritus density and density reduction factors for tree species in the United States: a synthesis. Gen. Tech. Rep. NRS-29. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 29.

  • Hartmann H, Schuldt B, Sanders TG, Macinnis-Ng C, Boehmer HJ, Allen CD, Bolte A, Crowther TW, Hansen MC, Medlyn BE, Ruehr NK. 2018. Monitoring global tree mortality patterns and trends. Report from the VW symposium ‘Crossing scales and disciplines to identify global trends of tree mortality as indicators of forest health’. New Phytol 217(3):984-987.

    PubMed  Google Scholar 

  • Holeksa J, Saniga M, Szwagrzyk J, Czerniak M, Staszyńska K, Kapusta P. 2009. A giant tree stand in the West Carpathians—An exception or a relic of formerly widespread mountain European forests? For Ecol Manag 257(7):1577–1585.

    Google Scholar 

  • Holmes RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78.

    Google Scholar 

  • Houghton RA. 2007. Balancing the global carbon budget. Annu Rev Earth Planet Sci 35(1):313–347.

    CAS  Google Scholar 

  • Hu Z, Michaletz ST, Johnson DJ, McDowell NG, Huang Z, Zhou X, Xu C. 2018. Traits drive global wood decomposition rates more than climate. Glob Change Biol 24(11):5259–5269.

    Google Scholar 

  • Jacobson AP, Riggio J, Tait AM, Baillie JEM. 2019. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci Rep 9(1):1–3.

    CAS  Google Scholar 

  • Jagodziński AM, Dyderski MK, Horodecki P. 2020. Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For Ecol Manag 474:118329.

    Google Scholar 

  • Janda P, Tepley AJ, Schurman JS, Brabec M, Nagel TA, Bače R, Begovič K, Chaskovskyy O, Čada V, Dušátko M, Frankovič M. 2019. Drivers of basal area variation across primary late-successional Picea abies forests of the Carpathian Mountains. For Ecol Manag 435:196–204.

    Google Scholar 

  • Janda P, Trotsiuk V, Mikoláš M, Bače R, Nagel TA, Seidl R, Seedre M, Morrissey RC, Kucbel S, Jaloviar P, Jasík M. 2017. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For Ecol Manag 388:67–78

    Google Scholar 

  • Karney CF. 2013. Algorithms for geodesics. J Geod 87(1):43–55.

    Google Scholar 

  • Keeling HC, Phillips OL. 2007. The global relationship between forest productivity and biomass. Glob Ecol Biogeogr 16(5):618–631.

    Google Scholar 

  • Keeton WS, Whitman AA, McGee GC, Goodale CL. 2011. Late-successional biomass development in northern hardwood-conifer forests of the northeastern United States. For Sci 57(6):489–505.

    Google Scholar 

  • Keith H, Mackey BG, Lindenmayer DB. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci 106(28):11635–11640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobe RK. 1997. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80:226–233.

    Google Scholar 

  • Korolyova N, Buechling A, Ďuračiová R, Zabihi K, Turčáni M, Svoboda M, Bláha J, Swarts K, Poláček M, Hradecký J, Červenka J. 2022. The last trees standing: climate modulates tree survival factors during a prolonged bark beetle outbreak in Europe. Agric for Meteorol 322:109025.

    Google Scholar 

  • Král K, Daněk P, Janík D, Krůček M, Vrška T. 2018. How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? J Veg Sci 29(1):84–97.

    Google Scholar 

  • Krueger I, Schulz C, Borken W. 2017. Stocks and dynamics of soil organic carbon and coarse woody debris in three managed and unmanaged temperate forests. Eur J for Res 136:123–137.

    CAS  Google Scholar 

  • Kublin E, Breidenbach J, Kändler G. 2013a. A flexible stem taper and volume prediction method based on mixed-effects B-spline regression. Eur J for Res 132(5):983–997.

    Google Scholar 

  • Kublin E, Breidenbach J, Kändler G. 2013b. TapeR: flexible tree taper curves based on semiparametric mixed models. R package version 0.3. 0.

  • Kueppers LM, Southon J, Baer P, Harte J. 2004. Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia 141(4):641–651.

    PubMed  Google Scholar 

  • Larjavaara M, Muller-Landau HC. 2011. Temperature explains global variation in biomass among humid old-growth forests. Glob Ecol Biogeogr 21(10):998–1006.

    Google Scholar 

  • Lasky JR, Uriarte M, Boukili VK, Erickson DL, John Kress W, Chazdon RL. 2014. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol Lett 17(9):1158–1167.

    PubMed  Google Scholar 

  • Liu Y, Yu G, Wang Q, Zhang Y. 2014. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob Ecol Biogeogr 23(3):323–333.

    Google Scholar 

  • Luyssaert S, Schulze E, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. 2008. Old-growth forests as global carbon sinks. Nature 455(7210):213–215.

    CAS  PubMed  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447(7146):849–851.

    CAS  Google Scholar 

  • Marchand W, Buechling A, Rydval M, Čada V, Stegehuis AI, Fruleux A, Poláček M, Hofmeister J, Pavlin J, Ralhan D, Dušátko M. 2023. Accelerated growth rates of Norway spruce and European beech saplings from Europe’s temperate primary forests are related to warmer conditions. Agric for Meteorol 329:109280.

    Google Scholar 

  • Mackey B, DellaSala DA, Kormos C, Lindenmayer D, Kumpel N, Zimmerman B, Hugh S, Young V, Foley S, Arsenis K, Watson JE. 2015. Policy options for the world’s primary forests in multilateral environmental agreements. Conserv Lett 8(2):139–147.

    Google Scholar 

  • Mackey B, Kormos CF, Keith H, Moomaw WR, Houghton RA, Mittermeier RA, Hole D, Hugh S. 2020. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig Adapt Strateg Glob Change 25(5):763–787.

    Google Scholar 

  • McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC. 2020. Pervasive shifts in forest dynamics in a changing world. Science 368(6494):eaaz9463.

    CAS  PubMed  Google Scholar 

  • Meigs GW, Morrissey RC, Bače R, Chaskovskyy O, Čada V, Després T, Donato DC, Janda P, Lábusová J, Seedre M, Mikoláš M. 2017. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For Ecol Manag 406:410–426.

    Google Scholar 

  • Meigs GW, Keeton WS. 2018. Intermediate-severity wind disturbance in mature temperate forests: legacy structure, carbon storage, and stand dynamics. Ecol Appl 28(3):798–815.

    PubMed  Google Scholar 

  • Meyer P, Nagel R, Feldmann E. 2021. Limited sink but large storage: BIOMASS dynamics in naturally developing beech (Fagus sylvatica) and oak (Quercus robur, Quercus petraea) forests of north-western Germany. J Ecol 109(10):3602–3616.

    CAS  Google Scholar 

  • Mikoláš M, Svitok M, Bače R, Meigs GW, Keeton WS, Keith H, Buechling A, Trotsiuk V, Kozák D, Bollmann K, Begovič K, Čada V, Chaskovskyy O, Ralhan D, Dušátko M, Ferenčík M, Frankovič M. 1961. Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Proc R Soc B 2021(288):20211631.

    Google Scholar 

  • Mikoláš M, Ujházy K, Jasík M, Wiezik M, Gallay I, Polák P, Vysoký J, Čiliak M, Meigs GW, Svoboda M, Trotsiuk V. 2019. Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. For Ecol Manag 449:117466.

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H, Oksanen MJ. 2013. Package ‘vegan.’ Community Ecol Package Version 2(9):1–295.

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P. 2011. A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993.

    CAS  PubMed  Google Scholar 

  • Pavlin J, Nagel TA, Svitok M, Pettit JL, Begović K, Mikac S, Dikku A, Toromani E, Panayotov M, Zlatanov T, Haruta O. 2021. Disturbance history is a key driver of tree life span in temperate primary forests. J Veg Sci 32(5):e13069.

    Google Scholar 

  • Price CG. 2013. Lightning applications in weather and climate research. Surv Geophys 34(6):755–767.

    Google Scholar 

  • Pugh TA, Arneth A, Kautz M, Poulter B, Smith B. 2019. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat Geosci 12(9):730–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • REMOTE Primary Forests. 2022. Research on mountain temperate primary forests. https://www.remoteforests.org/

  • Ryan MG, Yoder BJ. 1997. Hydraulic limits to tree height and tree growth: what keeps trees from growing beyond a certain height? Bioscience 47:235–242.

    Google Scholar 

  • Saulnier M, Schurman J, Vostarek O, Rydval M, Pettit J, Trotsiuk V, Janda P, Bače R, Björklund J, Svoboda M. 2020. Climatic drivers of Picea growth differ during recruitment and interact with disturbance severity to influence rates of canopy replacement. Agric for Meteorol 287:107981.

    Google Scholar 

  • Schurman JS, Babst F, Björklund J, Rydval M, Bače R, Čada V, Janda P, Mikolas M, Saulnier M, Trotsiuk V, Svoboda M. 2019. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Glob Change Biol 25(9):3136–3150.

    Google Scholar 

  • Seedre M, Janda P, Trotsiuk V, Hedwall PO, Morrissey RC, Mikoláš M, Bače R, Čada V, Svoboda M. 2020. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. For Ecol Manag 455:117676.

    Google Scholar 

  • Smithwick EAH, Harmon ME, Remillard SM, Acker SA, Franklin JF. 2002. Potential upper bounds of carbon stores in forests of the Pacific Northwest. Ecol Appl 12(5):1303–1317.

    Google Scholar 

  • Stillhard J, Hobi ML, Brang P, Brändli UB, Korol M, Pokynchereda V, Abegg M. 2022. Structural changes in a primeval beech forest at the landscape scale. For Ecol Manag 504:119836.

    Google Scholar 

  • Swetnam TW, Allen CD, Betancourt JL. 1999. Applied historical ecology: using the past to manage for the future. Ecol Appl 9(4):1189–1206.

    Google Scholar 

  • Svoboda M, Janda P, Bače R, Fraver S, Nagel TA, Rejzek J, Mikoláš M, Douda J, Boublík K, Šamonil P, Čada V. 2014. Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J Veg Sci 25(2):386–401.

    Google Scholar 

  • Szwagrzyk J, Gazda A. 2007. Above-ground standing biomass and tree species diversity in natural stands of Central Europe. J Veg Sci 18(4):555–562.

    Google Scholar 

  • Trotsiuk V, Pederson N, Druckenbrod DL, Orwig DA, Bishop DA, Barker-Plotkin A, Fraver S, Martin-Benito D. 2018. Testing the efficacy of tree-ring methods for detecting past disturbances. For Ecol Manag 425:59–67.

    Google Scholar 

  • Van Tuyl S, Law BE, Turner DP, Gitelman AI. 2005. Variability in net primary production and carbon storage in biomass across Oregon forests—an assessment integrating data from forest inventories, intensive sites, and remote sensing. For Ecol Manag 209(3):273–291.

    Google Scholar 

  • Van Wagner CE. 1968. The line intersect method in forest fuel sampling. For Sci 14(1):20–26.

    Google Scholar 

  • Whittaker RH, Bormann FH, Likens GE, Siccama TG. 1974. The Hubbard Brook ecosystem study: forest biomass and production. Ecol Monogr 44(2):233–254.

    Google Scholar 

  • Whittaker RH, Woodwell GM. 1968. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J Ecol 56:1–25.

    Google Scholar 

  • Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc Ser B (stat Methodol) 73(1):3–6.

    Google Scholar 

  • Yamaguchi DK. 1991. A simple method for cross-dating increment cores from living trees. Can J for Res 21(3):414–416.

    Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J. 2009. Global wood density database.

  • Zhang T, Niinemets Ü, Sheffield J, Lichstein JW. 2018. Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556(7699):99–102.

    CAS  PubMed  Google Scholar 

  • Zhu K, Zhang J, Niu S, Chu C, Luo Y. 2018. Limits to growth of forest biomass carbon sink under climate change. Nat Commun 9(1):1–8.

    Google Scholar 

Download references

Acknowledgements

Ondřej Vostarek involved in research and data development. Andrew James Walles took part in revising the document, proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Ralhan.

Additional information

Author Contributions: DR: Wrote the paper, conceived of or designed study, performed research, analysed data; contributed new methods or models. HK: Conceived of or designed study, performed research, analysed data; contributed new methods or models, wrote the paper. JP, AIS, WM, AF, MP, TAM, AB: Analysed data, contributed new methods or models, wrote the paper. MM, DK: Analysed data, contributed new methods or models, conceived of or designed study. MS: Analysed data, contributed new methods or models. MD: Conceived of or designed study, analysed data, contributed new methods or models. PJ: Conceived of or designed study, analysed data, contributed new methods or models. OC, C-CR: Conceived of or designed study. MS: Conceived of or designed study, performed research, analysed data; contributed new methods or models, wrote the paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 241 kb)

Supplementary file2 (DOCX 230 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralhan, D., Keith, H., Pavlin, J. et al. Temperate Primary Forest Biomass Accumulates over Centuries-Long Time Frames. Ecosystems 26, 1685–1702 (2023). https://doi.org/10.1007/s10021-023-00858-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-023-00858-w

Keywords

Navigation