Skip to main content

Advertisement

Log in

Coastal Forest in Eastern Southern Africa has Savanna Bush-clump Origins

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The extensive coastal forests in eastern southern Africa persist as a putative alternative stable state in an open ecosystem mosaic that includes grassland and savanna. We examine two current hypotheses of the state-transition origins of these forests: (1) facilitation—where light-demanding pioneer cohorts facilitate establishment by species that tolerate shade and whose functional traits align with forest; and (2) nucleation—where tree species of savanna origin establish on fire refugia in grassland, and where forest develops from the coalescence of these bush-clumps. We compared tree species diversity and composition on old-lands colonized by the savanna pioneer Vachellia kosiensis, with bush-clumps established on old-lands and on untransformed grassland, to determine their resemblance to intact coastal forest. The facilitation pathway in V. kosiensis woodland comprised impoverished tree assemblages differing markedly in richness, diversity, and composition from the nucleation pathway. By contrast, the bush-clump nucleation pathway comprised random assemblages of savanna species. Overlap in savanna tree composition between the bush-clump pathway and forest was notable. A suite of functional traits related to growth, reproduction and dispersal revealed that the life histories of most coastal forest tree species (~ 88%, n = 83 species) correspond with those expected from savanna. A combination of shade intolerance, multi-stemmed architecture, and growth form plasticity indicate species origins and persistence under frequent fire and variable light regimes typical of savanna environments. While these coastal woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna and questions the efficacy of their management as successional forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abreu RCR, Durigan G, Melo ACG, Pilon NAL, Hoffmann WA. 2021. Facilitation by isolated trees triggers woody encroachment and a biome shift at the savanna–forest transition. J Appl Ecol 58:2650–2660.

    Article  Google Scholar 

  • Accatino F, Wiegand K, Ward D, De Michele C. 2016. Trees, grass, and fire in humid savannas—The importance of life history traits and spatial processes. Ecol Model 320:135–144.

    Article  Google Scholar 

  • Adie H, Kotze DJ, Lawes MJ. 2017. Small fire refugia in the grassy matrix and the persistence of Afrotemperate forest in the Drakensberg mountains. Sci Rep 7:6549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adie H, Lawes MJ. 2022. Solutions to fire and shade: resprouting, growing tall and the origin of temperate broadleaved forest. Biological Reviews. https://doi.org/10.1111/brv.12923.

  • Adie H, Yeaton RI. 2013. Regeneration dynamics in arid subtropical thicket, South Africa. S Afr J Bot 88:80–85.

    Article  Google Scholar 

  • Albornoz FE, Gaxiola A, Seaman BJ, Pugnaire FI, Armesto JJ. 2013. Nucleation-driven regeneration promotes post-fire recovery in a Chilean temperate forest. Plant Ecol 214:765–776.

    Article  Google Scholar 

  • Aleman JC, Fayolle A, Favier C, Staver AC, Dexter KG, Ryan CM, Azihou AF, Bauman D, te Beest M, Chidumayo EN, Comiskey JA, Cromsigt JPGM, Dessard H, Doucet J-L, Finckh M, Gillet J-F, Gourlet-Fleury S, Hempson GP, Holdo RM, Kirunda B, Kouame FN, Mahy G, Gonçalves FMP, McNicol I, Quintano PN, Plumptre AJ, Pritchard RC, Revermann R, Schmitt CB, Swemmer AM, Talila H, Woollen E, Swaine MD. 2020. Floristic evidence for alternative biome states in tropical Africa. Proc Natl Acad Sci USA: 202011515.

  • Almeida-Neto M, Ulrich W. 2011. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Software 26:173–178.

    Article  Google Scholar 

  • Archibald S. 2016. Managing the human component of fire regimes: lessons from Africa. Philos Trans R Soc Lond, Ser B: Biol Sci 371.

  • Archibald S, Bond WJ. 2003. Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102:3–14.

    Article  Google Scholar 

  • Baltzer JL, Thomas SC. 2007. Determinants of whole-plant light requirements in Bornean rain forest tree saplings. J Ecol 95:1208–1221.

    Article  Google Scholar 

  • Barlow J, Peres CA. 2008. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos Trans R Soc Lond, Ser b: Biol Sci 363:1787–1794.

    Article  Google Scholar 

  • Bellingham PJ, Sparrow AD. 2009. Multi-stemmed trees in montane rain forests: their frequency and demography in relation to elevation, soil nutrients and disturbance. J Ecol 97:472–483.

    Article  Google Scholar 

  • Bennett AC, Dargie GC, Cuni-Sanchez A, Tshibamba Mukendi J, Hubau W, Mukinzi JM, Phillips OL, Malhi Y, Sullivan MJP, Cooper DLM, Adu-Bredu S, Affum-Baffoe K, Amani CA, Banin LF, Beeckman H, Begne SK, Bocko YE, Boeckx P, Bogaert J, Brncic T, Chezeaux E, Clark CJ, Daniels AK, de Haulleville T, Djuikouo Kamdem M-N, Doucet J-L, Evouna Ondo F, Ewango CEN, Feldpausch TR, Foli EG, Gonmadje C, Hall JS, Hardy OJ, Harris DJ, Ifo SA, Jeffery KJ, Kearsley E, Leal M, Levesley A, Makana J-R, Mbayu Lukasu F, Medjibe VP, Mihindu V, Moore S, Nssi Begone N, Pickavance GC, Poulsen JR, Reitsma J, Sonké B, Sunderland TCH, Taedoumg H, Talbot J, Tuagben DS, Umunay PM, Verbeeck H, Vleminckx J, White LJT, Woell H, Woods JT, Zemagho L, Lewis SL. 2021. Resistance of African tropical forests to an extreme climate anomaly. Proc Natl Acad Sci USA 118:e2003169118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond W, Zaloumis NP. 2016. The deforestation story: testing for anthropogenic origins of Africa’s flammable grassy biomes. Philos Trans R Soc Lond, Ser b: Biol Sci 371:20150170.

    Article  Google Scholar 

  • Bond WJ. 2019. Open ecosystems. Ecology and evolution beyond the forest edge. Oxford University Press: Oxford.

    Book  Google Scholar 

  • Bond WJ, Midgley JJ. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51.

    Article  CAS  PubMed  Google Scholar 

  • Bond WJ, Parr CL. 2010. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Conserv 143:2395–2404.

    Article  Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ. 2009. Fire in the Earth System. Science 324:481–484.

    Article  CAS  PubMed  Google Scholar 

  • Boyes L, Gunton R, Griffiths M, Lawes M. 2011. Causes of arrested succession in coastal dune forest. Plant Ecol 212:21–32.

    Article  Google Scholar 

  • Carlucci MB, Duarte LdS, Pillar VD. 2011. Nurse rocks influence forest expansion over native grassland in southern Brazil. J Veg Sci 22:111–119.

    Article  Google Scholar 

  • Chao A, Shen T-J. 2003. Nonparametric estimation of Shannon’s index of diversity when there are unseen species in sample. Environ Ecol Stat 10:429–443.

    Article  Google Scholar 

  • Charles-Dominique T, Midgley GF, Tomlinson KW, Bond WJ. 2018. Steal the light: shade vs fire adapted vegetation in forest–savanna mosaics. New Phytol 218:1419–1429.

    Article  PubMed  Google Scholar 

  • Clarke PJ, Knox KJE, Campbell ML, Copeland LM. 2009. Post-fire recovery of woody plants in the New England Tableland Bioregion. Cunninghamia 11:221–239.

    Google Scholar 

  • Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE. 2013. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytol 197:19–35.

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK. 2013. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. User's Guide and application published at: http://purl.oclc.org/estimates.

  • Connell JH, Slatyer RO. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144.

    Article  Google Scholar 

  • Davis MA, Condit R. 2022. Neighbours consistently influence tree growth and survival in a frequently burned open oak landscape. J Ecol 110:1802–1812.

    Article  Google Scholar 

  • Dexter KG, Smart B, Baldauf C, Baker TR, Bessike Balinga MP, Brienen RJW, Fauset S, Feldpausch TR, Ferreira-Da Silva L, Ilunga Muledi J, Lewis SL, Lopez-Gonzalez G, Marimon-Junior BH, Marimon BS, Meerts P, Page N, Parthasarathy N, Phillips OL, Sunderland TCH, Theilade I, Weintritt J, Affum-Baffoe K, Araujo A, Arroyo L, Begne SK, Carvalho-Das Neves E, Collins M, Cuni-Sanchez A, Djuikouo MNK, Elias F, Foli EG, Jeffery KJ, Killeen TJ, Malhi Y, Maracahipes L, Monteagudo-Mendoza A, Morandi P, Oliveira-Dos Santos C, Parada-Gutierrez A, Pardo G, Peh KS-H, Salomão RP, Silveira M, Sinatora-Miranda H, Slik JWF, Sonke B, Taedoumg HE, Toledo M, Umetsu RK, Villaroel RG, Vos VA, White LJT, Pennington RT. 2015. Floristics and biogeography of vegetation in seasonally dry tropical regions. Int for Rev 17:10–32.

    Google Scholar 

  • Everham EM, Brokaw NVL. 1996. Forest damage and recovery from catastrophic wind. Bot Rev 62:113–185.

    Article  Google Scholar 

  • Fayolle A, Swaine MD, Bastin J-F, Bourland N, Comiskey JA, Dauby G, Doucet J-L, Gillet J-F, Gourlet-Fleury S, Hardy OJ, Kirunda B, Kouamé FN, Plumptre AJ. 2014. Patterns of tree species composition across tropical African forests. J Biogeogr 41:2320–2331.

    Article  Google Scholar 

  • Finch JM, Hill TR. 2008. A late Quaternary pollen sequence from Mfabeni Peatland, South Africa: reconstructing forest history in Maputaland. Quatern Res 70:442–450.

    Article  Google Scholar 

  • Flake SW, Abreu RCR, Durigan G, Hoffmann WA. 2021. Savannas are not old fields: Functional trajectories of forest expansion in a fire-suppressed Brazilian savanna are driven by habitat generalists. Funct Ecol 35:1797–1809.

    Article  CAS  Google Scholar 

  • Gaillard C, Langan L, Pfeiffer M, Kumar D, Martens C, Higgins SI, Scheiter S. 2018. African shrub distribution emerges via a trade-off between height and sapwood conductivity. J Biogeogr 45:2815–2826.

    Article  Google Scholar 

  • Gordon IG. 1989. Natal indigenous forests: a preliminary collection of reports on indigenous forests in Natal. Natal Parks Board: Pietermaritzburg.

  • Gotelli NJ, Colwell RK. 2010. Estimating species richness. In: Magurran AE, McGill BJ, editors. Biological diversity: frontiers in measurement and assessment. Oxford University Press: Oxford, UK. pp 39–54.

  • Götmark F, Götmark E, Jensen AM. 2016. Why be a shrub? A basic model and hypotheses for the adaptive values of a common growth form. Front Plant Sci 7:1095.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grainger MJ, van Aarde RJ, Wassenaar TD. 2011. Landscape composition influences the restoration of subtropical coastal dune forest. Restor Ecol 19:111–120.

    Article  Google Scholar 

  • Hall M. 1980. Enkwazini, an Iron Age site on the Zululand coast. Ann Natal Mus 24:97–109.

    Google Scholar 

  • Hill JL, Curran PJ. 2003. Area, shape and isolation of tropical forest fragments: effects on tree species diversity and implications for conservation. J Biogeogr 30:1391–1403.

    Article  Google Scholar 

  • Hirota M, Holmgren M, van Nes EH, Scheffer M. 2011. Global resilience of tropical forest and savanna to critical transitions. Science 334:232–235.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann WA, Franco AC. 2003. Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. J Ecol 91:475–484.

    Article  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC. 2012. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768.

    Article  PubMed  Google Scholar 

  • Hubbell SP. 2005. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172.

    Article  Google Scholar 

  • Joseph GS, Seymour CL, Cumming GS, Mahlangu Z, Cumming DHM. 2013. Escaping the flames: large termitaria as refugia from fire in miombo woodland. Landscape Ecol 28:1505–1516.

    Article  Google Scholar 

  • Jost L. 2006. Entropy and diversity. Oikos 113:363–375.

    Article  Google Scholar 

  • Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA. 2011. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411.

    Article  CAS  PubMed  Google Scholar 

  • Kruger LM, Midgley JJ, Cowling RM. 1997. Resprouters vs reseeders in South African forest trees; a model based on forest canopy height. Funct Ecol 11:101–105.

    Article  Google Scholar 

  • Landesmann JB, Gowda JH, Garibaldi LA, Kitzberger T. 2015. Survival, growth and vulnerability to drought in fire refuges: implications for the persistence of a fire-sensitive conifer in northern Patagonia. Oecologia 179:1111–1122.

    Article  PubMed  Google Scholar 

  • Lawes MJ, Midgley JJ, Clarke PJ. 2013. Costs and benefits of relative bark thickness in relation to fire damage: a savanna/forest contrast. J Ecol 101:517–524.

    Article  Google Scholar 

  • Lowe AJ, Clarke GP. 2000. Vegetation structure. In: Burgess ND, Clarke GP, Eds. Coastal forests of eastern Africa, . Cambridge: IUCN - The World Conservation Union. pp 103–114.

    Google Scholar 

  • Lusk CH, Kelly JWG, Gleason SM. 2012. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann Bot 111:479–488.

    Article  PubMed  PubMed Central  Google Scholar 

  • Midgley JJ, Everard DA, van Wyk G. 1995. Relative lack of regeneration of shade-intolerant canopy species in some South African forests. S Afr J Sci 91:7–8.

    Google Scholar 

  • Mucina L, Lötter MC, Rutherford MC, van Niekerk A, Macintyre PD, Tsakalos JL, Timberlake J, Adams JB, Riddin T, McCarthy LK. 2021. Forest biomes of Southern Africa. N Z J Bot: 1–52.

  • Murphy BP, Bowman DMJS. 2012. What controls the distribution of tropical forest and savanna? Ecol Lett 15:748–758.

    Article  PubMed  Google Scholar 

  • Nzunda EF, Griffiths ME, Lawes MJ. 2007. Multi-stemmed trees in subtropical coastal dune forest: Survival strategy in response to chronic disturbance. J Veg Sci 18:693–700.

    Article  Google Scholar 

  • O’Connor TG, Chamane SC. 2012. Bush clump succession in grassland in the Kei Road region of the Eastern Cape, South Africa. Afr J Range Forage Sci 29:133–146.

    Article  Google Scholar 

  • O’Connor TG, Puttick JR, Hoffman MT. 2014. Bush encroachment in southern Africa: changes and causes. Afr J Range Forage Sci 31:67–88.

    Article  Google Scholar 

  • Pammenter NW, Berjak M, Macdonald IAW. 1985. Regeneration of a Natal coastal dune forest after fire. S Afr J Bot 51:453–459.

    Article  Google Scholar 

  • Pausas JG. 2015. Alternative fire-driven vegetation states. J Veg Sci 26:4–6.

    Article  Google Scholar 

  • Pletcher E, Staver C, Schwartz NB. 2022. The environmental drivers of tree cover and forest–savanna mosaics in Southeast Asia. Ecography 2022:e06280.

    Article  Google Scholar 

  • Poorter L, Kitajima K, Mercado P, Chubiña J, Melgar I, Prins HHT. 2010. Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology 91:2613–2627.

    Article  PubMed  Google Scholar 

  • R Core Team. 2015. R: a language and environment for statistical computing: R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org/.

  • Ratnam J, Bond WJ, Fensham RJ, Hoffmann WA, Archibald S, Lehmann CER, Anderson MT, Higgins SI, Sankaran M. 2011. When is a ‘forest’ a savanna, and why does it matter? Global Ecol Biogeogr 20:653–660.

    Article  Google Scholar 

  • Ratnam J, Sheth C, Sankaran M. 2020. African and Asian savannas. In: Sankaran M, Ed. Scogings PF, . Chichester, UK: Savanna woody plants and large herbivores. John Wiley & Sons Ltd. pp 25–49.

    Google Scholar 

  • Rossatto DR, Hoffmann WA, Franco AC. 2009. Differences in growth patterns between co-occurring forest and savanna trees affect the forest-savanna boundary. Funct Ecol 23:689–698.

    Article  Google Scholar 

  • RStudio Team. 2019. RStudio: Integrated Development for R. Boston, MA URL http://www.rstudio.com/: RStudio, Inc.

  • Schulze RE. 2007. South African Atlas of Climatology and Agrohydrology. Pretoria, RSA: Water Research Commission, WRC Report 1489/1/06.

  • Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci USA 106:20359–20364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staver AC, Archibald S, Levin SA. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–232.

    Article  CAS  PubMed  Google Scholar 

  • Staver AC, Bond WJ, Cramer MD, Wakeling JL. 2012. Top-down determinants of niche structure and adaptation among African Acacias. Ecol Lett 15:673–679.

    Article  PubMed  Google Scholar 

  • Tabarelli M, Mantovani W, Peres CA. 1999. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biol Conserv 91:119–127.

    Article  Google Scholar 

  • Tsvuura Z, Griffiths M, Gunton R, Franks P, Lawes M. 2010. Ecological filtering by a dominant herb selects for shade tolerance in the tree seedling community of coastal dune forest. Oecologia 164:861–870.

    Article  PubMed  Google Scholar 

  • Ulrich W, Almeida-Neto M, Gotelli NJ. 2009. A consumer’s guide to nestedness analysis. Oikos 118:3–17.

    Article  Google Scholar 

  • van Wilgen BW, Scholes RJ. 1997. The vegetation and fire regimes of southern hemisphere Africa. In: Andreae M, Goldammer J, Lindsay K, Eds. Fire in southern African savannas: Ecological and atmospheric perspectives, . Johannesburg: Witwatersrand University Press. pp 27–46.

    Google Scholar 

  • von Maltitz GP, van Wyk GF, Everard DA. 1996. Successional pathways in disturbed coastal dune forest on the coastal dunes in north-east KwaZulu-Natal, South Africa. S Afr J Bot 62:188–195.

    Article  Google Scholar 

  • Warman L, Moles AT. 2009. Alternative stable states in Australia’s Wet Tropics: a theoretical framework for the field data and a field-case for the theory. Landscape Ecol 24:1–13.

    Article  Google Scholar 

  • Wassenaar TD, van Aarde RJ. 2005. The ecology of coastal dune forest restoration. Pretoria: University of Pretoria. p p57.

    Google Scholar 

  • Weisser PJ, Marques F. 1979. Gross vegetation changes in the dune area between Richards Bay and the Mfolozi River, 1937–1974. Bothalia 12:711–721.

    Article  Google Scholar 

  • West A, Bond WJ, Midgley JJ. 2000. Dune forest succession on old lands: implications for post-mining restoration. In: Seydack A, Vermuelen WJ, Vermeulen C, editors. Towards sustainable management based on scientific understanding of natural forests and woodlands. Natural forests and woodlands symposium II. Department of Water Affairs and Forestry: Knysna. pp 35–39.

  • Yarranton GA, Morrison RG. 1974. Spatial dynamics of a primary succession: nucleation. J Ecol 62:417–428.

    Article  Google Scholar 

  • Zizka A, Govender N, Higgins SI. 2014. How to tell a shrub from a tree: a life-history perspective from a South African savanna. Austral Ecol 39:767–778.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ezemvelo KZN Wildlife for providing the MacDevette-Gordon plot data for this study. Debbie Jewett and Heidi Snyman (both Ezemvelo KZN Wildlife) sourced the plot data and assisted with the locality map, respectively. MJL is grateful to Kirsty and Laurence Wahlberg for financial assistance. We thank two anonymous reviewers for insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hylton Adie.

Additional information

H.A. and M.J.L. conceived the ideas and designed methodology; G.N. collected the maturation age data; H.A. analysed the data and led the writing. All authors contributed critically to the drafts and gave final approval for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Supplementary file2 (DOCX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adie, H., Nichols, G. & Lawes, M.J. Coastal Forest in Eastern Southern Africa has Savanna Bush-clump Origins. Ecosystems 26, 1033–1046 (2023). https://doi.org/10.1007/s10021-022-00814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00814-0

Keywords

Navigation