Skip to main content

Advertisement

Log in

Soil Abiotic Properties Shape Plant Functional Diversity Across Temperate Grassland Plant Communities

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

There is increasing awareness that plant community functional properties can be an important driver of ecosystem functioning. However, major knowledge gaps exist about how environmental factors, especially climate and soil abiotic properties, shape plant functional diversity at a regional scale. Furthermore, at those scales the relationships between plant functional and taxonomic diversity have rarely been considered. Here, we used a large database of plant species and functional trait data from 180 temperate grasslands across England, covering a broad range of grassland types, climatic conditions and management intensities, the last having a strong influence on multiple soil variables. Our specific aims were to: (1) identify the dominant environmental factors explaining variation in different facets of plant community functional properties, including community weighted means (CWMs) of functional traits and various multi-trait functional diversity indices; and (2) test whether the relationship between plant functional and taxonomic diversity is mediated by environmental factors at a regional scale. We found that soil abiotic properties (pH and nutrient stocks), but not climate, were the main environmental factors explaining grassland plant functional diversity at a regional scale, with a significant contribution of soil nutrient stoichiometry (N/P ratio). Two indices of plant community functional properties, namely CWMs of specific leaf area and relative growth rate, were explained by interactions between soil pH and N and mean annual precipitation, soil pH soil N and soil N/P ratio. These indices were also negatively related to taxonomic diversity under certain soil abiotic conditions, specifically high soil clay content, pH and N/P. Together, our results indicate that soil abiotic properties rather than climate factors shape plant functional diversity across temperate grassland plant communities at a regional scale. They also suggest that interactions between environmental factors play a significant role in shaping patterns of plant community functional properties. Our findings are of importance for the design and interpretation of future studies using trait and diversity measures as proxies of ecosystem services at regional scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aerts R, Chapin FS. 1999. The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns. Adv Ecol Res 30:1–67.

    Article  Google Scholar 

  • Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, Rillig MC, Schaefer M, Schloter M, Schmitt B, Schöning I, Schrumpf M, Solly E, Sorkau E, Steckel J, Steffen-Dewenter I, Stempfhuber B, Tschapka M, Weiner CN, Weisser WW, Werner M, Westphal C, Wilcke W, Fischer M. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol Lett 18:834–843.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anonymous. 2006. The Rural Development Service Technical advice Note 52.

  • Barros MF, Pinho BX, Leão T, Tabarelli M. 2018. Soil attributes structure plant assemblages across an Atlantic forest mosaic. J Plant Ecol 11:613–622.

    Article  Google Scholar 

  • Barton K. 2018. Package ‘MuMIn’ Title Multi-Model Inference. Cran-R:74.

  • Boeddinghaus RS, Marhan S, Berner D, Boch S, Fischer M, Hölzel N, Kattge J, Klaus VH, Kleinebecker T, Oelmann Y, Prati D, Schäfer D, Schöning I, Schrumpf M, Sorkau E, Kandeler E, Manning P. 2019. Plant functional trait shifts explain concurrent changes in the structure and function of grassland soil microbial communities. J Ecol 107:2197–2210.

    Article  CAS  Google Scholar 

  • Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu C, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, Decrappeo NM, Du G, Firn J, Hautier Y, Heckman RW, Hector A, Hillerislambers J, Iribarne O, Klein JA, Knops JMH, La Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O’Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–520.

    Article  CAS  PubMed  Google Scholar 

  • Borgy B, Violle C, Choler P, Denelle P, Munoz F, Kattge J, Lavorel S, Loranger J, Amiaud B, Bahn M, van Bodegom PM, Brisse H, Debarros G, Diquelou S, Gachet S, Jolivet C, Lemauviel-Lavenant S, Mikolajczak A, Olivier J, Ordoñez J, de Ruffray P, Viovy N, Garnier E. 2017. Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Glob Ecol Biogeogr 26:1138–1152.

    Article  Google Scholar 

  • Botta-Dukát Z. 2005. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540.

    Article  Google Scholar 

  • Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field R, Jansen F, Kattge J, Pillar VD, Schrodt F, Mahecha MD, Peet RK, Sandel B, van Bodegom P, Altman J, Alvarez-Dávila E, Arfin Khan MAS, Attorre F, Aubin I, Baraloto C, Barroso JG, Bauters M, Bergmeier E, Biurrun I, Bjorkman AD, Blonder B, Čarni A, Cayuela L, Černý T, Cornelissen JHC, Craven D, Dainese M, Derroire G, De Sanctis M, Díaz S, Doležal J, Farfan-Rios W, Feldpausch TR, Fenton NJ, Garnier E, Guerin GR, Gutiérrez AG, Haider S, Hattab T, Henry G, Hérault B, Higuchi P, Hölzel N, Homeier J, Jentsch A, Jürgens N, Kącki Z, Karger DN, Kessler M, Kleyer M, Knollová I, Korolyuk AY, Kühn I, Laughlin DC, Lens F, Loos J, Louault F, Lyubenova MI, Malhi Y, Marcenò C, Mencuccini M, Müller JV, Munzinger J, Myers-Smith IH, Neill DA, Niinemets Ü, Orwin KH, Ozinga WA, Penuelas J, Pérez-Haase A, Petřík P, Phillips OL, Pärtel M, Reich PB, Römermann C, Rodrigues AV, Sabatini FM, Sardans J, Schmidt M, Seidler G, Silva Espejo JE, Silveira M, Smyth A, Sporbert M, Svenning JC, Tang Z, Thomas R, Tsiripidis I, Vassilev K, Violle C, and others 2018. Global trait–environment relationships of plant communities. Nat Ecol Evol 2:1906–1917.

    Article  PubMed  Google Scholar 

  • Busch V, Klaus VH, Penone C, Schäfer D, Boch S, Prati D, Müller J, Socher SA, Niinemets Ü, Peñuelas J, Hölzel N, Fischer M, Kleinebecker T. 2018. Nutrient stoichiometry and land use rather than species richness determine plant functional diversity. Ecol Evol 8:601–616.

    Article  PubMed  Google Scholar 

  • Cadotte MW. 2017. Functional traits explain ecosystem function through opposing mechanisms. Ecol Lett 20:989–996.

    Article  PubMed  Google Scholar 

  • Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087.

    Article  Google Scholar 

  • Calcagno V. 2015. Package glmulti 1.0.7, Title Model selection and multimodel inference made easy. Community Ecol Packag:1–20.

  • Camargo JA. 1993. Must dominance increase with the number of subordinate species in competitive interactions? J Theor Biol 161:537–542.

    Article  Google Scholar 

  • Canty A, Ripley B. 2017. Package ‘boot’. Bootstrap Functions. CRAN R Proj.

  • Cardinale BJ, Hillebrand H, Harpole WS, Gross K, Ptacnik R. 2009. Separating the influence of resource ‘availability’ from resource ‘imbalance’ on productivity-diversity relationships. Ecol Lett 12:475–487.

    Article  PubMed  Google Scholar 

  • Carmona CP, de Bello F, Mason NWH, Lepš J. 2016. Traits Without Borders: Integrating Functional Diversity Across Scales. Trends Ecol Evol 31:382–394.

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Cerabolini B, Castro-Díez P, Villar-Salvador P, Montserrat-Martí G, Puyravaud JP, Maestro M, Werger MJA, Aerts R. 2003. Functional traits of woody plants: Correspondence of species rankings between field adults and laboratory-grown seedlings? J Veg Sci 14:311–322.

    Article  Google Scholar 

  • Cornelissen JHC, Quested HM, Gwynn-Jones D, Van Logtestijn RSP, De Beus MAH, Kondratchuk A, Callaghan TV, Aerts R. 2004. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct Ecol 18:779–786.

    Article  Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M. 1999. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:569–588.

    Article  Google Scholar 

  • De Bello F, Carmona CP, Mason NWH, Sebastià MT, Lepš J. 2013. Which trait dissimilarity for functional diversity: Trait means or trait overlap? Zobel M, editor. J Veg Sci 24:807–819.

    Article  Google Scholar 

  • de Bello F, Carmona CP, Lepš J, Szava-Kovats R, Pärtel M. 2016. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180:933–940.

    Article  PubMed  Google Scholar 

  • DEFRA. 2010. Fertiliser Manual (RB209), 8th edn. Norwich

  • De Deyn GB, Shiel RS, Ostle NJ, Mcnamara NP, Oakley S, Young I, Freeman C, Fenner N, Quirk H, Bardgett RD. 2011. Additional carbon sequestration benefits of grassland diversity restoration. J Appl Ecol 48:600–608.

    Article  Google Scholar 

  • de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD. 2012. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett.

  • Delgado-Baquerizo M, Fry EL, Eldridge DJ, de Vries FT, Manning P, Hamonts K, Kattge J, Boenisch G, Singh BK, Bardgett RD. 2018. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytol 219:574–587.

    Article  PubMed  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci U S A 104:20684–20689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz S, Cabido M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655.

    Article  Google Scholar 

  • Dwyer JM, Hobbs RJ, Wainwright CE, Mayfield MM. 2015. Climate moderates release from nutrient limitation in natural annual plant communities. Glob Ecol Biogeogr 24:549–561.

    Article  Google Scholar 

  • Fox J, Weisberg S, Price B, Adler D, Bates D, Baud-Bovy G. 2018. Package ‘car’. R Doc:146.

  • Freney JR, Simpson JR, Denmead OT. 1983. Volatilization of ammonia. Gaseous Loss of Nitrogen from Plant-Soil Systems, . Springer: Netherlands. pp 1–32.

    Chapter  Google Scholar 

  • Fujita Y, Venterink HO, Van Bodegom PM, Douma JC, Heil GW, Hölzel N, Jabłońska E, Kotowski W, Okruszko T, Ruiter Pawlikowski Pawełand De, PC, Wassen MJ. 2014. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 505:82–86.

    Article  PubMed  Google Scholar 

  • Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J. 2017. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol Rev 92:1156–1173.

    Article  PubMed  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, and others 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637.

    Article  Google Scholar 

  • Garnier E, Lavorel S, Ansquer P, Castro H, Cruz P, Dolezal J, Eriksson O, Fortunel C, Freitas H, Golodets C, Grigulis K, Jouany C, Kazakou E, Kigel J, Kleyer M, Lehsten V, Lepš J, Meier T, Pakeman R, Papadimitriou M, Papanastasis VP, Quested H, Quétier F, Robson M, Roumet C, Rusch G, Skarpe C, Sternberg M, Theau JP, Thébault A, Vile D, Zarovali MP. 2007. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann Bot 99:967–985.

    Article  PubMed  Google Scholar 

  • Griffin-Nolan RJ, Bushey JA, Carroll CJW, Challis A, Chieppa J, Garbowski M, Hoffman AM, Post AK, Slette IJ, Spitzer D, Zambonini D, Ocheltree TW, Tissue DT, Knapp AK. 2018. Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct Ecol 32:1746–1756.

    Article  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clément J-CC. 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Hutchings M, editor. J Ecol 101:47–57.

    Article  Google Scholar 

  • Grime JP. 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol 86:902–910.

    Article  Google Scholar 

  • Grime JP. 2006. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veg Sci 17:255–260.

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R. 2007. Comparative Plant Ecology: A Functional Approach to common British Species.

  • Harpole WS, Tilman D. 2007. Grassland species loss resulting from reduced niche dimension. Nat 2006 4467137 446:791–3.

  • Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science (80- ) 324:636–8.

  • Hernández-Vargas G, Sánchez-Velásquez LR, López-Acosta JC, Noa-Carrazana JC, Perroni Y. 2019. Relationship between soil properties and leaf functional traits in early secondary succession of tropical montane cloud forest. Ecol Res 34:213–224.

    Article  Google Scholar 

  • Hesterberg TC, Moore DS, Monaghan S, Clipson a, Epstein R. 2005. Bootstrap Methods and Permutation Tests. :1–70.

  • Hillebrand H, Bennett DM, Cadotte MW. 2008. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89:1510–1520.

    Article  PubMed  Google Scholar 

  • Huang X, Su J, Li S, Liu W, Lang X. 2019. Functional diversity drives ecosystem multifunctionality in a Pinus yunnanensis natural secondary forest. Sci Rep:1–8.

  • Jenkins G, Perry M, Prior J, others. 2009. The climate of the United Kingdom and recent trends. Met Office Hadley Centre

  • Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, Wright IJ, and others 2011. TRY–a global database of plant traits. Glob Chang Biol 17:2905–2935.

    Article  PubMed Central  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464.

    Article  CAS  PubMed  Google Scholar 

  • Kichenin E, Wardle DA, Peltzer DA, Morse CW, Egoire G, Freschet T. 2013. Contrasting effects of plant inter-and intraspecific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261.

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, Van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Dannemann A, Endels P, Götzenberger L, Hodgson JG, Jackel AK, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Peco B. 2008. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274.

    Article  Google Scholar 

  • Laliberté E, Legendre P, Shipley B. 2015. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R Packag:Version 1.0–12.

  • Laureto LMO, Cianciaruso MV. 2015. Trait distribution patterns in savanna and forest plant assemblages and their relationship with soil features. Plant Ecol 216:629–639.

    Article  Google Scholar 

  • Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets Ü, Ordonez A, Reich PB, Santiago LS. 2015. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob Ecol Biogeogr 24:706–717.

    Article  Google Scholar 

  • Májekova M, De Bello F, Doležal J, Lepš J. 2014. Plant functional traits as determinants of population stability. Ecology 95:2369–2374.

    Article  Google Scholar 

  • Manning P, de Vries FT, Tallowin JRB, Smith R, Mortimer SR, Pilgrim ES, Harrison KA, Wright DG, Quirk H, Benson J, Shipley B, Cornelissen JHC, Kattge J, Bönisch G, Wirth C, Bardgett RD. 2015. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J Appl Ecol 52:1188–1196.

    Article  CAS  Google Scholar 

  • McGrath JM, Spargo J, Penn CJ. 2014. Soil Fertility and Plant Nutrition. Encyclopedia of Agriculture and Food Systems, . Elsevier: San Diego. pp 166–184.

    Chapter  Google Scholar 

  • Met Office. 2022. UK actual and anomaly maps - Met Office. https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps. Last accessed 14/09/2022

  • Miles J. 2005. Tolerance and variance inflation factor. Encycl Stat Behav Sci.

  • Moles AT, Perkins SE, Laffan SW, Flores-Moreno H, Awasthy M, Tindall ML, Sack L, Pitman A, Kattge J, Aarssen LW, Anand M, Bahn M, Blonder B, Cavender-Bares J, Cornelissen JHC, Cornwell WK, Díaz S, Dickie JB, Freschet GT, Griffiths JG, Gutierrez AG, Hemmings FA, Hickler T, Hitchcock TD, Keighery M, Kleyer M, Kurokawa H, Leishman MR, Liu K, Niinemets Ü, Onipchenko V, Onoda Y, Penuelas J, Pillar VD, Reich PB, Shiodera S, Siefert A, Sosinski EE, Soudzilovskaia NA, Swaine EK, Swenson NG, van Bodegom PM, Warman L, Weiher E, Wright IJ, Zhang H, Zobel M, Bonser SP. 2014. Which is a better predictor of plant traits: Temperature or precipitation? Helm A, editor. J Veg Sci 25:1167–1180.

    Article  Google Scholar 

  • Morelli F, Benedetti Y, Perna P, Santolini R. 2018. Associations among taxonomic diversity, functional diversity and evolutionary distinctiveness vary among environments. Ecol Indic 88:8–16.

    Article  Google Scholar 

  • Moretti M, De Bello F, Ibanez S, Fontana S, Pezzatti GB, Dziock F, Rixen C, Lavorel S. 2013. Linking traits between plants and invertebrate herbivores to track functional effects of land-use changes. J Veg Sci 24:949–962.

    Article  Google Scholar 

  • Naeem S, Wright JP. 2003. Disentangling biodiversity effects on ecosystem functioning: Deriving solutions to a seemingly insurmountable problem. Ecol Lett 6:567–579.

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142.

    Article  Google Scholar 

  • Ondrasek G, Bakić Begić H, Zovko M, Filipović L, Meriño-Gergichevich C, Savić R, Rengel Z. 2019. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci Total Environ 658:1559–1573.

    Article  CAS  PubMed  Google Scholar 

  • Pavoine S, Dolédec S. 2005. The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. Environ Ecol Stat 12:125–138. https://doi.org/10.1007/s10651-005-1037-2

    Article  CAS  Google Scholar 

  • Pavoine S, Gasc A, Bonsall MB, Mason NWH. 2013. Correlations between phylogenetic and functional diversity: Mathematical artefacts or true ecological and evolutionary processes? J Veg Sci 24:781–793.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2006. Functional diversity: Back to basics and looking forward. Ecol Lett 9:741–758.

    Article  PubMed  Google Scholar 

  • Poorter H, De Jong R. 1999. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143:163–176.

    Article  CAS  Google Scholar 

  • R Core Team. 2017. R: A Language and Environment for Statistical Computing.

  • Rao CR. 1982. Diversity and dissimilarity coefficients: A unified approach. Theor Popul Biol 21:24–43.

    Article  Google Scholar 

  • Reich PB. 2014. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Cornelissen H, editor. J Ecol 102:275–301.

    Article  Google Scholar 

  • Rodríguez A, Canals RM, Plaixats J, Albanell E, Debouk H, Garcia-Pausas J, San Emeterio L, Ribas À, Jimenez JJ, Sebastià MT. 2020. Interactions between biogeochemical and management factors explain soil organic carbon in Pyrenean grasslands. Biogeosciences 17:6033–6050.

    Article  Google Scholar 

  • Rodwell JS. 1992. British plant communities. Volume 3: grasslands and montane communities. Br plant communities Vol 3 grasslands Mont communities.

  • Saar L, Takkis K, Pärtel M, Helm A. 2012. Which plant traits predict species loss in calcareous grasslands with extinction debt? Divers Distrib 18:808–817.

    Article  Google Scholar 

  • Schellenberger Costa D, Gerschlauer F, Pabst H, Kühnel A, Huwe B, Kiese R, Kuzyakov Y, Kleyer M. 2017. Community-weighted means and functional dispersion of plant functional traits along environmental gradients on Mount Kilimanjaro. J Veg Sci 28:684–695.

    Article  Google Scholar 

  • Shipley B. 1989. The Use of Above-Ground Maximum Relative Growth Rate as an Accurate Predictor of Whole-Plant Maximum Relative Growth Rate. Funct Ecol 3:771.

    Article  Google Scholar 

  • Shipley B. 2002. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Funct Ecol 16:682–689.

    Article  Google Scholar 

  • Shipley B, Parent M. 1991. Germination Responses of 64 Wetland Species in Relation to Seed Size, Minimum Time to Reproduction and Seedling Relative Growth Rate. Funct Ecol 5:111.

    Article  Google Scholar 

  • Shipley B, Vu TT. 2002. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol 153:359–364.

    Article  Google Scholar 

  • Simpson AH, Richardson SJ, Laughlin DC. 2016. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob Ecol Biogeogr 25:964–978.

    Article  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004. Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science (80- ) 303:1876–9.

  • Stirling G, Wilsey B. 2001. Empirical relationships between species richness, evenness, and proportional diversity. Am Nat 158:286–299.

    Article  CAS  PubMed  Google Scholar 

  • Symonds MRE, Moussalli A. 2011. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav Ecol Sociobiol 65:13–21.

    Article  Google Scholar 

  • Tilman D. 2001. Functional diversity. Encyclopedia of biodiversity. Acad Press San Diego:109–20.

  • Tuomisto H. 2012. An updated consumer’s guide to evenness and related indices. Oikos 121:1203–1218.

    Article  Google Scholar 

  • Vile D, Shipley B, Garnier E. 2006. Ecosystem productivity can be predicted from potential relative growth rate and species abundance. Ecol Lett 9:1061–1067.

    Article  PubMed  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301.

    Article  PubMed  Google Scholar 

  • Wang J, Yu FH. 2018. Effects of functional diversity and functional dominance on complementary light use depend on evenness. J Veg Sci 29:726–736.

    Article  Google Scholar 

  • Ward SE, Smart SM, Quirk H, Tallowin JRB, Mortimer SR, Shiel RS, Wilby A, Bardgett RD. 2016. Legacy effects of grassland management on soil carbon to depth. Glob Chang Biol 22:2929–2938.

    Article  PubMed  Google Scholar 

  • Wardle DA. 2016. Do experiments exploring plant diversity-ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? Palmer M, editor. J Veg Sci 27:646–653.

    Article  Google Scholar 

  • Wilsey BJ, Chalcraft DR, Bowles CM, Willig MR. 2005. Relationships among indices suggest that richness is an incomplete surrogate for grassland biodiversity. Ecology 86:1178–1184.

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornellssen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada H, Poorter H, Pool P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428:821–827.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Guo Z, Zhang P, Li H, Chu C, Li X, Du G. 2017. Different categories of biodiversity explain productivity variation after fertilization in a Tibetan alpine meadow community. Ecol Evol 7:3464–3474.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang Y, Zhang P, Guo Z, Chu C, Du G. 2016. The effects of fertilization on the trait-abundance relationships in a Tibetan alpine meadow community. J Plant Ecol 9:144–152.

    Article  Google Scholar 

Download references

Acknowledgements

Writing of this paper was possible thanks to the projects from the Spanish Science Foundation BIOGEI (CGL2013-49142-C2-1-R) and IMAGINE (CGL2017-85490-R), and a PhD Fellowship and Research Stay by the University of Lleida to AR. Data collection was funded by a DEFRA grant awarded to a consortium led by RDB (BD1451) with Jerry Tallowin, Simon Mortimer and Robert Shiel and Roger Smith. RDB was also supported by a grant from the UK Biotechnology and Biological Sciences Research Council (BBSRC) (Grant BB/I009000/2), and FTDV was supported by a BBSRC David Phillips Fellowship (BB/L02456X/1). We thank MPI-BGC Jena, who host TRY, and the international funding networks supporting TRY (IGBP, DIVERSITAS, GLP, NERC, QUEST, FRB and GIS Climate).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rodríguez.

Additional information

Author contributions This study was initiated by AR, MTS, FDV and RDB. The collection of field data was led by RDB, and plant trait data were compiled by FDV and PM. Data analyses were carried out by AR with assistance from FDV and RDB, and AR led the paper writing with contributions from all co-authors. MTS supervised and gained funding to support AR.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12371 kb)

Supplementary file2 (DOCX 6458 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., de Vries, F.T., Manning, P. et al. Soil Abiotic Properties Shape Plant Functional Diversity Across Temperate Grassland Plant Communities. Ecosystems 26, 1000–1017 (2023). https://doi.org/10.1007/s10021-022-00812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00812-2

Keywords

Navigation