Skip to main content

Advertisement

Log in

Climate Effects on Prairie Productivity Partially Ameliorated by Soil Nutrients and Plant Community Responses

  • Published:
Ecosystems Aims and scope Submit manuscript

Net primary productivity (NPP) is a key ecosystem function of plant communities. Climate change is expected to affect NPP both directly and indirectly through associated edaphic and plant community factors. Changes in soil nutrients, plant species richness and/or functional group dominance may amplify or counteract direct climatic effects on NPP, and responses may differ above-versus belowground, making it challenging to predict the net effects on NPP. In this study, we manipulated temperature and precipitation at four sites spanning a latitudinal Mediterranean-climate gradient in the Pacific Northwest, USA, and measured aboveground, belowground, and total NPP responses in experimentally assembled prairie plant communities. Using structural equation models, we disentangled the direct effects of climate from its indirect effects through soil nutrient availability and plant community responses. We found that warming, primarily by reducing soil moisture (that is, drying), had a net negative effect on all aspects of NPP, but these negative effects were partially ameliorated by increasing nitrogen and phosphorus availability, as well as changes to the plant community. Specifically, warming, drying, and greater nutrient availability caused species richness to decline, leading to greater dominance by a restricted set of functional groups, which positively affected aboveground NPP. Furthermore, a shift from perennial grass to annual grass dominance increased the ratio of aboveground to belowground NPP. Our results demonstrate that the indirect effects of climate change can help partially buffer the negative direct effects on NPP in Mediterranean-climate prairies. However, increasing soil moisture limitation may still overwhelm the positive effects of such intermediary pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data accessibility

Data used in this study are included as Supplementary Information, available at https://doi.org/10.1007/s10021-022-00811-3.

References

  • Abrams MM, Jarrell WM. 1995. Soil phosphorus as a potential nonpoint source for elevated stream phosphorus levels. Journal of Environmental Quality 24:132–138.

    Article  CAS  Google Scholar 

  • Baer SG, Blair JM, Collins SL, Knapp AK. 2003. Soil resources regulate productivity and diversity in newly established tallgrass prairie. Ecology 84:724–735.

    Article  Google Scholar 

  • Bastos A, Gouveia CM, Trigo RM, Running SW. 2014. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences 11:3421–3435.

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48.

    Article  Google Scholar 

  • Bloor JMG, Bardgett RD. 2012. Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability. Perspect Plant Ecol Evol Syst 14:193–204. https://doi.org/10.1016/j.ppees.2011.12.001.

    Article  Google Scholar 

  • Brooks ML. 2003. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert. J Appl Ecol 40:344–353.

    Article  Google Scholar 

  • Brookshire ENJ, Weaver T. 2015. Long-term decline in grassland productivity driven by increasing dryness. Nat Commun 6:7148. https://doi.org/10.1038/ncomms8148

  • Chapin FS. 1980. The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260.

    Article  CAS  Google Scholar 

  • Chapin F, Vitousek P, Cleve K. 1986. The nature of nutrient limitation in plant communities. Am Nat 127:48–58.

    Article  Google Scholar 

  • Cleland EE, Lind EM, DeCrappeo NM, DeLorenze E, Wilkins RA, Adler PB, Bakker JD, Brown CS, Davies KF, Esch E, Firn J, Gressard S, Gruner DS, Hagenah N, Harpole WS, Hautier Y, Hobbie SE, Hofmockel KS, Kirkman K, Knops J, Kopp CW, La Pierre KJ, MacDougall A, McCulley RL, Melbourne BA, Moore JL, Prober SM, Riggs C, Risch AC, Schuetz M, Stevens C, Wragg PD, Wright J, Borer ET, Seabloom EW. 2019. Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands. Ecosystems 22:1466–1477. https://doi.org/10.1007/s10021-019-00350-4.

    Article  CAS  Google Scholar 

  • Craven D, Isbell F, Manning P, Connolly J, Bruelheide H, Ebeling A, Roscher C, van Ruijven J, Weigelt A, Wilsey B, Beierkuhnlein C, de Luca E, Griffin JN, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Loreau M, Meyer ST, Mori AS, Naeem S, Palmborg C, Polley HW, Reich PB, Schmid B, Siebenkäs A, Seabloom E, Thakur MP, Tilman D, Vogel A, Eisenhauer N. 2016. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos Trans R Soc Lond B Biol Sci 371:20150277-. http://rstb.royalsocietypublishing.org/content/371/1694/20150277

  • Dalton M, Fleishman E. 2021. Fifth Oregon Climate Assessment. Corvallis, Oregon https://blogs.oregonstate.edu/occri/oregon-climate-assessments/

  • De Boeck HJ, Lemmens CMHM, Gielen B, Bossuyt H, Malchair S, Carnol M, Merckx R, Ceulemans R, Nijs I. 2007. Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environ Exp Bot 60:95–104.

    Article  Google Scholar 

  • De Boeck HJ, Lemmens CMHM, Zavalloni C, Gielen B, Malchair S, Carnol M, Merckx R, Van den Berge J, Ceulemans R, Nijs I. 2008. Biomass production in experimental grasslands of different species richness during three years of climate warming. Biogeosciences 5:585–594.

    Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, García-Gómez M, Soliveres S, García-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceicao AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitán J, Gatica MG, Gómez-González S, Guzman E, Gutiérrez JR, Florentino A, Hepper E, Hernández RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramírez E, Ramírez-Collantes DA, Romao R, Tighe M, Torres D, Torres-Díaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–6.

    Article  CAS  PubMed  Google Scholar 

  • Denton EM, Dietrich JD, Smith MD, Knapp AK. 2017. Drought timing differentially affects above- and belowground productivity in a mesic grassland. Plant Ecol 218:317–328.

    Article  Google Scholar 

  • Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, Lecain DR, Follett RF, Williams DG. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol 196:807–815.

    Article  CAS  PubMed  Google Scholar 

  • Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB. 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci 13:221–226. https://doi.org/10.1038/s41561-019-0530-4.

    Article  CAS  Google Scholar 

  • Duffy JE, Godwin CM, Cardinale BJ. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549:261–264. https://doi.org/10.1038/nature23886.

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142.

    Article  PubMed  Google Scholar 

  • Elzinga CL, Salzer DW, Willoughby JW. 1998. Measuring & monitoring plant populations.

  • Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long R, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang Z, Stahlmann R, Stotz GC, Sugiyama S-I. 2015. Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science (80- ) 349:302–5.

  • Gornish ES, Tylianakis JM. 2013. Community shifts under climate change: Mechanisms at multiple scales. Am J Bot 100:1422–1434.

    Article  PubMed  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE. 2011. Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862.

    Article  PubMed  Google Scholar 

  • Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, Chaneton EJ, Chu C, Cleland EE, D’Antonio C, Davies KF, Gruner DS, Hagenah N, Kirkman K, Knops JMH, La Pierre KJ, McCulley RL, Moore JL, Morgan JW, Prober SM, Risch AC, Schuetz M, Stevens CJ, Wragg PD. 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537:93–96.

    Article  CAS  PubMed  Google Scholar 

  • Harrison S, Spasojevic MJ, Li D. 2020. Climate and plant community diversity in space and time. Proc Natl Acad Sci U S A 117:4464–4470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison S. 2020. Plant community diversity will decline more than increase under climatic warming. Philos Trans R Soc B Biol Sci 375.

  • Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2009. Anthropogenic environmental change affects ecosystem stability via biodiversity. Science (80- ) 348:336–40.

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate B a., Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–8. https://www.nature.com/articles/nature11118#supplementary-information.

  • Hou E, Luo Y, Kuang Y, Chen C, Lu X, Jiang L, Luo X, Wen D. 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-020-14492-w.

    Article  CAS  Google Scholar 

  • Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, De Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, Van Der Putten WH, Van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:1–3.

    Article  Google Scholar 

  • James G, Witten D, Hastie T, Tibshirani R. 2013. An Introduction to Statistical Learning with Applications in R. 1st editio. (Casella G, Fienberg S, Olkin I, editors.). New York, NY: Springer https://www.springer.com/gp/book/9781461471370.

  • Jones MB, Donnelly A. 2004. Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439.

    Article  Google Scholar 

  • Jung IW, Chang H. 2012. Climate change impacts on spatial patterns in drought risk in the Willamette River Basin, Oregon, USA. Theor Appl Climatol 108:355–371.

    Article  Google Scholar 

  • Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT. 2010. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol 16:2676–2687.

    Article  Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA. 2013. Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457.

    Article  PubMed  Google Scholar 

  • Knapp AK, Carroll CJW, Fahey TJ. 2014. Patterns and controls of terrestrial primary production in a changing world. In: Monson RK, editor. Ecology and the Environment. New York, NY: Springer New York. pp 205–46. https://doi.org/10.1007/978-1-4614-7501-9_2.

  • Koteen LE, Baldocchi DD, Harte J. 2011. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands. Environ Res Lett 6.

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263.

    Article  Google Scholar 

  • LeBauer D, Treseder K. 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379.

    Article  PubMed  Google Scholar 

  • Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol 7:573–579.

    Article  Google Scholar 

  • Lemoine NP, Sheffield J, Dukes JS, Knapp AK, Smith MD. 2016. Terrestrial Precipitation Analysis (TPA): A resource for characterizing long-term precipitation regimes and extremes. Methods Ecol Evol 7:1396–1401.

    Article  Google Scholar 

  • Li W, Cheng JM, Yu KL, Epstein HE, Guo L, Jing GH, Zhao J, Du GZ. 2015. Plant functional diversity can be independent of species diversity: Observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLoS One 10:1–15.

    Google Scholar 

  • Liira J, Zobel K. 2000. The species richness-biomass relationship in herbaceous plant communities: What difference does the incorporation of root biomass data make? Oikos 91:109–114.

    Article  Google Scholar 

  • Lindberg CL, Hanslin HM, Schubert M, Marcussen T, Trevaskis B, Preston JC, Fjellheim S. 2020. Increased above-ground resource allocation is a likely precursor for independent evolutionary origins of annuality in the Pooideae grass subfamily. New Phytol 228:318–329.

    Article  PubMed  Google Scholar 

  • Liu H, Mi Z, Lin L, Wang Y, Zhang Z, Zhang F, Wang H, Liu L, Zhu B, Cao G, Zhao X, Sanders NJ, Classen AT, Reich PB, He JS. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc Natl Acad Sci USA 115:4051–4056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science (80- ) 294:804–9.

  • Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Burrows E, Bowles F, Smith R, Scott L, Vario C, Hill T, Burton A, Zhouj YM, Tang J. 2011. Soil warming, carbon-nitrogen interactions, and forest carbon budgets. Proc Natl Acad Sci USA 108:9508–9512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mokany K, Ash J, Roxburgh S. 2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893.

    Article  Google Scholar 

  • Mote PW, Salathé EP. 2010. Future climate in the Pacific Northwest. Clim Change 102:29–50.

    Article  Google Scholar 

  • Mueller KE, Tilman D, Fornara DA, Hobbie SE. 2013. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–793.

    Article  Google Scholar 

  • Nakagawa S, Johnson PCD, Schielzeth H. 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J R Soc Interface 14.

  • Pfeifer-Meister L, Bridgham SD, Little CJ, Reynolds LL, Goklany ME, Johnson BR. 2013. Pushing the limit: experimental evidence of climate effects on plant range distributions. Ecology 94:2131–2137.

    Article  PubMed  Google Scholar 

  • Pfeifer-Meister L, Bridgham SD, Reynolds LL, Goklany ME, Wilson HE, Little CJ, Ferguson A, Johnson BR. 2016. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA. Glob Chang Biol 22:845–855.

    Article  PubMed  Google Scholar 

  • Prevéy JS, Seastedt TR. 2014. Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. J Ecol 102:1549–1561.

    Article  Google Scholar 

  • PRISM Climate Group. 2021. https://prism.oregonstate.edu/

  • Pugnaire FI, Morillo JA, Peñuelas J, Reich PB, Bardgett RD, Gaxiola A, Wardle DA, Van Der Putten WH. 2019. Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Sci Adv 5:1–12.

    Article  Google Scholar 

  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Reed PB, Pfeifer-Meister LE, Roy BA, Johnson BR, Bailes GT, Nelson AA, Boulay MC, Hamman ST, Bridgham SD. 2019. Prairie plant phenology driven more by temperature than moisture in climate manipulations across a latitudinal gradient in the Pacific Northwest, USA. Ecol Evol 9:3637–3650.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed PB, Pfeifer-Meister LE, Roy BA, Johnson BR, Bailes GT, Nelson AA, Bridgham SD. 2021c. Introduced annuals mediate climate-driven community change in Mediterranean prairies of the Pacific Northwest, USA. Divers Distrib 27:2584–2595.

    Article  Google Scholar 

  • Reed PB, Bridgham SD, Pfeifer-Meister LE, Peterson ML, Johnson BR, Roy BA, Bailes GT, Nelson AA, Morris WF, Doak DF. 2021a. Climate warming threatens the persistence of a community of disturbance-adapted native annual plants. Ecology 0:1–13.

  • Reed PB, Peterson ML, Pfeifer-Meister LE, Morris WF, Doak DF, Roy BA, Johnson BR, Bailes GT, Nelson AA, Bridgham SD. 2021b. Climate manipulations differentially affect plant population dynamics within versus beyond northern range limits. Stott I, editor. J Ecol 109:664–75. https://doi.org/10.1111/1365-2745.13494

  • Reich PB, Tilman D, Naeem S, Ellsworth DS, Knops J, Craine J, Wedin D, Trost J. 2004. Species and functional group diversity independently influence biomass accumulation and its response to CO 2 and N. Proc Natl Acad Sci 101:10101–10106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds LL, Johnson BR, Pfeifer-Meister L, Bridgham SD. 2015. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient. Glob Chang Biol 21:487–500.

    Article  PubMed  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, Alward R, Beier C, Burke I, Canadell J, Callaghan T, Christensen TR, Fahnestock J, Fernandez I, Harte J, Hollister R, John H, Ineson P, Johnson MG, Jonasson S, John L, Linder S, Lukewille A, Masters G, Melillo J, Mickelsen A, Neill C, Olszyk DM, Press M, Pregitzer K, Robinson C, Rygiewiez PT, Sala O, Schmidt IK, Shaver G, Thompson K, Tingey DT, Verburg P, Wall D, Welker J, Wright R. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562.

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Peñuelas J. 2012. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton KE, Rawls WJ. 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 1578:1569–1578.

    Article  Google Scholar 

  • Seabloom EW, Benfield CD, Borer ET, Stanley AG, Kaye TN, Dunwiddie PW. 2011. Provenance, life span, and phylogeny do not affect grass species’ responses to nitrogen and phosphorus. Ecol Appl 21:2129–2142.

    Article  PubMed  Google Scholar 

  • Shao J, Zhou X, Groenigen KJ, Zhou G, Zhou H, Zhou L, Lu M, Xia J, Jiang L, Hungate BA, Luo Y, He F, Thakur MP. 2022. Warming effects on grassland productivity depend on plant diversity. Glob Ecol Biogeogr 31:588–598.

    Article  Google Scholar 

  • Shaw EA, White CT, Silver WL, Suding KN, Hallett LM. 2021. Intra-annual precipitation effects on annual grassland productivity and phenology are moderated by community responses. J Ecol:1–11.

  • Sullivan BW, Selmants PC, Hart SC. 2012. New evidence that high potential nitrification rates occur in soils during dry seasons: Are microbial communities metabolically active during dry seasons? Soil Biol Biochem 53:28–31. https://doi.org/10.1016/j.soilbio.2012.04.029.

    Article  CAS  Google Scholar 

  • Tilman D, Wedin D, Knops J. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379:718–720.

    Article  CAS  Google Scholar 

  • Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. 2001. Diversity and productivity in a long-term grassland experiment. Science (80- ) 294:843–5. http://www.ncbi.nlm.nih.gov/pubmed/11679667

  • van der Plas F. 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev 94:1220–1245.

    PubMed  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15.

    Article  PubMed  Google Scholar 

  • Wang H, Chen ZX, Zhang XY, Zhu SX, Ge Y, Chang SX, Zhang CB, Huang CC, Chang J. 2013. Plant species richness increased belowground plant biomass and substrate nitrogen removal in a constructed wetland. Clean - Soil, Air, Water 41:657–664.

    Article  CAS  Google Scholar 

  • Wang J, Gao Y, Zhang Y, Yang J, Smith MD, Knapp AK, Eissenstat DM, Han X. 2019. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. Glob Chang Biol 25:2958–2969.

    Article  PubMed  Google Scholar 

  • Wingler A, Hennessy D. 2016. Limitation of grassland productivity by low temperature and seasonality of growth. Front Plant Sci 7:1–6.

    Article  Google Scholar 

  • Xiang SR, Doyle A, Holden PA, Schimel JP. 2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biol Biochem 40:2281–2289.

    Article  CAS  Google Scholar 

  • Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Ecology 96:1463–1468.

    CAS  Google Scholar 

  • Yuan ZY, Chen HYH. 2015. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat Clim Chang 5:465–469.

    Article  CAS  Google Scholar 

  • Zavaleta ES, Shaw MR, Chiariello NR, Thomas BD, Cleland EE, Field CB, Mooney HA. 2003. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol Monogr 73:585–604.

    Article  Google Scholar 

  • Zhang Q, Buyantuev A, Li FY, Jiang L, Niu J, Ding Y, Kang S, Ma W. 2017. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol Evol 7:1605–1615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuppinger-Dingley D, Schmid B, Petermann JS, yadav varuna, De Deyn GB, Flynn DFB. 2014. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108–11. https://doi.org/10.1038/nature13869

Download references

Acknowledgements

This study was made possible by field and laboratory assistance from many individuals including Holden Jones, Matthew Krna, Kathryn Nock, Lorien Reynolds, Megan Sherritt, Leah Thompson, and Xing Wu. We thank members of the Hallett Lab at the University of Oregon for their thoughtful comments and feedback on a first draft of this manuscript. We owe our gratitude to the Siskiyou Field Institute, The Nature Conservancy, and Capitol Land Trust for allowing us to conduct our experiments on their properties. Funding was provided by the National Science Foundation’s Macrosystems Biology Program, award # 1340847, and the US Department of Energy Office of Science, Office of Biological and Environmental Research, award # DE-FG02-09ER604719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Reed.

Additional information

Author Contributions PBR, BRJ, LPM, BAR, and SDB designed the experiment. All authors performed the research and collected the data. PBR, HRA, and AOO sorted and weighed biomass. GTB and AAN curated and processed climate data. PBR analyzed the data and wrote the manuscript. All authors provided important intellectual contributions during revisions and gave final approval for publication.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, P.B., Assour, H.R., Okotie-Oyekan, A. et al. Climate Effects on Prairie Productivity Partially Ameliorated by Soil Nutrients and Plant Community Responses. Ecosystems 26, 983–999 (2023). https://doi.org/10.1007/s10021-022-00811-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00811-3

Keywords

Navigation