Skip to main content

Watershed-scale Variation in Potential Fungal Community Contributions to Ectomycorrhizal Biogeochemical Syndromes

Abstract

Intrinsic soil properties have been shown to mediate the effects of ectomycorrhizal (ECM) fungi and their associated trees on soil organic matter (SOM) and nitrogen (N) cycling, but variation in the contribution of fungal communities to ECM effects across different forests remains uncertain. To investigate the potential role of fungal communities in driving observed variation in ECM effects, we characterized fungal community composition and function using DNA sequence variability of the ITS2 region of the fungal rRNA operon and measured chemical properties of forest floor leaf litter, soil organic horizon, and soil mineral horizons (0–5cm, 15–20 cm depth) beneath ECM-associated Oreomunnea mexicana focal trees. We sampled beneath focal trees in arbuscular mycorrhizal (AM)- and ECM-dominated stands within four adjacent watersheds that differed in underlying soil pH and fertility. We found that overall fungal community composition and the ratio of ECM to saprotrophic fungi differed between AM- and ECM-dominated stands in the lowest pH and fertility watershed but were similar between stand mycorrhizal types in the highest pH and fertility watershed. Patterns in fungal community composition and function aligned with patterns in N isotopic composition of forest floor leaf litter and mineral soil, which could reflect greater ECM transfer of N to the trees and greater contribution of hyphal biomass to SOM in the lowest pH and fertility watershed. Overall, our results suggest the potential for watershed-scale variation in soil pH and fertility to mediate fungal community contributions to variation in ECM effects on biogeochemical syndromes.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Data availability

DNA sequences will be archived in GenBank. Soil chemistry data will be archived in the Illinois Data Bank: Seyfried, Georgia; Corrales, Adriana; Kent, Angela; Dalling, James; Yang, Wendy (2022): “Watershed-scale variation in potential fungal community contributions to ectomycorrhizal biogeochemical syndromes,” University of Illinois at Urbana-Champaign. https://doi.org/10.13012/B2IDB-3532603_V1

References

  • Agerer R. 2001. Exploration types of ectomycorrhizae - A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114.

    Article  Google Scholar 

  • Agerer R. 2006. Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107.

    Article  Google Scholar 

  • Andersen KM, Endara MJ, Turner BL, Dalling JW. 2012. Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia 168:519–531.

    Article  PubMed  Google Scholar 

  • Beidler KV, Oh YE, Pritchard SG, Phillips RP. 2021. Mycorrhizal roots slow the decay of belowground litters in a temperate hardwood forest. Oecologia 197:743–755.

    Article  PubMed  Google Scholar 

  • Bodeker ITM, Clemmensen KE, de Boer W, Martin F, Olson A, Lindahl BD. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203:245–256.

    Article  PubMed  Google Scholar 

  • Bödeker ITM, Lindahl BD, Olson Å, Clemmensen KE. 2016. Mycorrhizal and saprotrophic fungal guilds compete for the same organic substrates but affect decomposition differently. Funct Ecol 30:1967–1978.

    Article  Google Scholar 

  • Cavelier J, Solis D, Jaramillo MA. 1996. Fog interception in montane forests across the Central Cordillera of Panama. J Trop Ecol 12:357–369.

    Article  Google Scholar 

  • Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P. 2017. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol 214:432–442.

    Article  CAS  PubMed  Google Scholar 

  • Chytrý M, Danihelka J, Ermakov N, Hájek M, Hájková P, Kočí M, Kubešová S, Lustyk P, Otýpková Z, Popov D, Roleěek J, Řezníčková M, Šmarda P, Valachovič M. 2007. Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Glob Ecol Biogeogr 16:668–678.

    Article  Google Scholar 

  • Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD. 2015. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol 205:1525–1536.

    Article  CAS  PubMed  Google Scholar 

  • Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW. 2016a. Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26:1–17.

    Article  PubMed  Google Scholar 

  • Corrales A, Mangan SA, Turner BL, Dalling JW. 2016b. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392.

    Article  PubMed  Google Scholar 

  • Corrales A, Turner BL, Tedersoo L, Anslan S, Dalling JW. 2017. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecol 27:14–23.

    Article  Google Scholar 

  • Craig ME, Turner BL, Liang C, Clay K, Johnson DJ, Phillips RP. 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob Change Biol 24:3317–3330.

    Article  Google Scholar 

  • Dalling JW, Turner BL. 2021. Soils of the Fortuna Forest Reserve. In: Dalling J, Turner B, editors. Fortuna Forest Reserve, Panama: Interacting Effects of Climate and Soils on the Biota of a Wet Premontane Tropical Forest. Smithsonian Contributions to Botany. pp 47–136.

  • Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Bjork RG, Epron D, Kieliszewska-Rokicka B, Kjoller R, Kraigher H, Matzner E, Neumann J, Plassard C. 2013. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27.

    Article  CAS  Google Scholar 

  • Fernandez CW, Kennedy PG. 2016. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT. 2016. The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49.

    Article  CAS  Google Scholar 

  • Fernandez CW, See CR, Kennedy PG. 2019. Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. New Phytol 226:569–582.

    Article  PubMed  Google Scholar 

  • Gadgil RL, Gadgil PD. 1971. Mycorrhiza and litter decomposition. Nature 233:133.

    Article  CAS  PubMed  Google Scholar 

  • Glassman SI, Wang IJ, Bruns TD. 2017. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol Ecol 26:6960–6973.

    Article  CAS  PubMed  Google Scholar 

  • Gordon A, Hannon G. 2010. Fastx-toolkit. FASTQ/A Short-reads Pre-processing Tools. Unpublished.

  • Hobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83.

    Article  CAS  Google Scholar 

  • Hobbie EA, Högberg P. 2012. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382.

    Article  CAS  PubMed  Google Scholar 

  • Högberg MN, Briones MJI, Keel SG, Metcalfe DB, Campbell C, Midwood AJ, Thornton B, Hurry V, Linder S, Näsholm T, Högberg P. 2010. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol 187:485–493.

    Article  PubMed  Google Scholar 

  • Högberg P, Högberg MN, Quist ME, Ekblad A, Näsholm T. 1999. Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizal Pinus sylvestris. New Phytol 142:569–576.

    Article  Google Scholar 

  • Ji C-J, Yang Y-H, Han W-X, He Y-F, Smith J, Smith P. 2014. Climatic and edaphic controls on soil ph in alpine grasslands on the Tibetan Plateau, China: a quantitative analysis. Pedosphere 24:39–44.

    Article  CAS  Google Scholar 

  • Karst J, Wasyliw J, Birch JD, Franklin J, Chang SX, Erbilgin N. 2021. Long-term nitrogen addition does not sustain host tree stem radial growth but doubles the abundance of high-biomass ectomycorrhizal fungi. Glob Change Biol 00:1–14.

    Google Scholar 

  • Keller AB, Phillips RP. 2019. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytol 222:556–564.

    Article  CAS  PubMed  Google Scholar 

  • Keymer DP, Kent AD. 2014. Contribution of nitrogen fixation to first year Miscanthus × giganteus. GCB Bioenergy 6:577–586.

    Article  CAS  Google Scholar 

  • Kivlin SN, Hawkes CV. 2016. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environ Microbiol 18:4662–4673.

    Article  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja HR, Labutti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm RA, Perotto S, Peter M, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Tunlid A, Grigoriev IV, Hibbett DS, Martin F. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410-U176.

    Article  CAS  PubMed  Google Scholar 

  • Kohzu A, Tateishi T, Yamada A, Koba K, Wada E. 2000. Nitrogen isotope fractionation during nitrogen transport from ectomycorrhizal fungi, Suillus granulatus, to the host plant, Pinus densiflora. Soil Sci Plant Nutr 46:733–739.

    Article  Google Scholar 

  • Koide RT, Fernandez C, Malcolm G. 2014. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol 201:433–439.

    Article  PubMed  Google Scholar 

  • Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. 2011. Using QIIME to Analyze 16S rRNA Gene Sequences from Microbial Communities. Curr Protoc Bioinf 36:10.7.1–10.7.20.

  • Kuyper TW. 2017. Carbon and Energy Sources of Mycorrhizal Fungi: Obligate Symbionts or Latent Saprotrophs? In: Elsevier. pp 357–74.

  • Kyaschenko J, Clemmensen KE, Karltun E, Lindahl BD. 2017. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 20:1546–1555.

    Article  PubMed  Google Scholar 

  • Leho T, Mohammad B, Sergei P, Urmas K, S. YN, Ravi W, Villarreal RL, M. V-PA, Quang TP, Ave S, E. SM, Cathy S, Erki S, Alessandro S, Miguel R, Taavi R, David R, Karin P, Kadri P, Meike P, Cherdchai P, Marko P, Kaarin P, Kadri P, Eveli O, Eduardo N, L. NA, Henrik NR, N. ML, Jordan M, W. MT, Luiza M, Jean LD, See LS, Karl-Henrik L, Petr K, Kentaro H, Indrek H, W. HT, Helery H, Liang-dong G, Alina G, Gwen G, Jozsef G, Genevieve G, William D, Chris D, Rein D, John D, André DK, Tan D, Xin C, Franz B, Q. BF, Gregory B, Sten A, Sandra A, Kessy A. 2014. Global diversity and geography of soil fungi. Science 346:1256688.

  • Li D, Voigt TB, Kent AD. 2016. Plant and soil effects on bacterial communities associated with Miscanthus × giganteus rhizosphere and rhizomes. GCB Bioenergy 8:183–193.

    Article  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM. 2002. Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115.

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR. 2011. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183.

    Article  Google Scholar 

  • Lin G, Craig ME, Jo I, Wang X, Zeng D-H, Phillips RP. 2022. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob Ecol Biogeogr 31:168–182.

    Article  Google Scholar 

  • Lindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, Stendahl J. 2021. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol Lett 24:1341–1351.

    Article  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H. 2013. Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447.

    Article  CAS  PubMed  Google Scholar 

  • Van Der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, Atkinson B, Benham S, Carroll C, Cools N, De Vos B, Dietrich HP, Eichhorn J, Gehrmann J, Grebenc T, Gweon HS, Hansen K, Jacob F, Kristöfel F, Lech P, Manninger M, Martin J, Meesenburg H, Merilä P, Nicolas M, Pavlenda P, Rautio P, Schaub M, Schröck HW, Seidling W, Šrámek V, Thimonier A, Thomsen IM, Titeux H, Vanguelova E, Verstraeten A, Vesterdal L, Waldner P, Wijk S, Zhang Y, Žlindra D, Bidartondo MI. 2018. Environment and host as large-scale controls of ectomycorrhizal fungi. Nat 558.

  • Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire KL, Fierer N, Bateman C, Treseder KK, Turner BL. 2012. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microb Ecol 63:804–812.

    Article  PubMed  Google Scholar 

  • Midgley MG, Sims RS. 2020. Mycorrhizal association better predicts tree effects on soil than leaf habit. Front for Glob Change 3:74.

    Article  Google Scholar 

  • Nasholm T, Hogberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Hogberg MN. 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221.

    Article  PubMed  Google Scholar 

  • Natelhoffer KJ, Fry B. 1988. Controls on natural nitrogen-15and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J 52:1633–1640.

    Article  CAS  Google Scholar 

  • Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, Paquette A, Gravel D, Reich PB, Kennedy PG. 2016. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field-based tree experiment. Mol Ecol 25:4032–4046.

    Article  PubMed  Google Scholar 

  • Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Szoecs E, Wagner H. 2019. vegan: Community Ecology Package.

  • Oliver AK, Brown SP, Callaham MA, Jumpponen A. 2015. Polymerase matters: non-proofreading enzymes inflate fungal community richness estimates by up to 15%. Fungal Ecol 15:86–89.

    Article  Google Scholar 

  • Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502.

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Davies SJ, Tan S, Bruns TD. 2010. Potential link between plant and fungal distributions in a dipterocarp rainforest: Community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. New Phytol 185:529–542.

    Article  CAS  PubMed  Google Scholar 

  • Pellitier PT, Zak DR, Argiroff WA, Upchurch RA. 2021. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosyst 24:1976–1990.

    Article  CAS  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51.

    Article  CAS  PubMed  Google Scholar 

  • Põlme S, Abarenkov K, Henrik Nilsson R, Lindahl BD, Clemmensen KE, Kauserud H, Nguyen N, Kjøller R, Bates ST, Baldrian P, Frøslev TG, Adojaan K, Vizzini A, Suija A, Pfister D, Baral HO, Järv H, Madrid H, Nordén J, Liu JK, Pawlowska J, Põldmaa K, Pärtel K, Runnel K, Hansen K, Larsson KH, Hyde KD, Sandoval-Denis M, Smith ME, Toome-Heller M, Wijayawardene NN, Menolli N, Reynolds NK, Drenkhan R, Maharachchikumbura SSN, Gibertoni TB, Læssøe T, Davis W, Tokarev Y, Corrales A, Soares AM, Agan A, Machado AR, Argüelles-Moyao A, Detheridge A, de Meiras-Ottoni A, Verbeken A, Dutta AK, Cui BK, Pradeep CK, Marín C, Stanton D, Gohar D, Wanasinghe DN, Otsing E, Aslani F, Griffith GW, Lumbsch TH, Grossart HP, Masigol H, Timling I, Hiiesalu I, Oja J, Kupagme JY, Geml J, Alvarez-Manjarrez J, Ilves K, Loit K, Adamson K, Nara K, Küngas K, Rojas-Jimenez K, Bitenieks K, Irinyi L, Nagy LL, Soonvald L, Zhou LW, Wagner L, Aime MC, Öpik M, Mujica MI, Metsoja M, Ryberg M, Vasar M, Murata M, Nelsen MP, Cleary M, Samarakoon MC, Doilom M, Bahram M, Hagh-Doust N, Dulya O, Johnston P, Kohout P, Chen Q, Tian Q, Nandi R, Amiri R, and others 2020. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Div 105:1–16.

    Article  Google Scholar 

  • Prada CM, Morris A, Andersen KM, Turner BL, Caballero P, Dalling JW. 2017. Soils and rainfall drive landscape-scale changes in the diversity and functional composition of tree communities in premontane tropical forest. J Veg Sci 28:859–870.

    Article  Google Scholar 

  • R Development Core Team. 2019. R: A language and environment for statistical computing. In: Vienna, Austria: R Foundation for Statistical Computing.

  • Reddy TBK, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. 2015. The Genomes OnLine Database (GOLD) vol 5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43:D1099–D1106.

    Article  CAS  PubMed  Google Scholar 

  • Russell VL. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means.

  • Seyfried GS, Canham CD, Dalling JW, Yang WH. 2021. The effects of tree-mycorrhizal type on soil organic matter properties from neighborhood to watershed scales. Soil Biol Biochem 161:108385.

    Article  CAS  Google Scholar 

  • Shapiro SS, Wilk MB. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52:591–611.

    Article  Google Scholar 

  • Smith GR, Wan J. 2019. Resource-ratio theory predicts mycorrhizal control of litter decomposition. New Phytol 223:1595–1606.

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Henkel TW, Catherine Aime M, Fremier AK, Vilgalys R. 2011. Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192:699–712.

    Article  PubMed  Google Scholar 

  • Sterkenburg E, Bahr A, Brandström Durling M, Clemmensen KE, Lindahl BD. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol 207:1145–1158.

    Article  PubMed  Google Scholar 

  • Stone DE. 1972. New World Juglandaceae, III. A new perspective of the tropical members with winged fruits. Ann Missouri Bot Garden 59:297.

    Article  Google Scholar 

  • Tedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99.

    Article  Google Scholar 

  • Treseder KK, Lennon JT. 2022. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262.

    Article  Google Scholar 

  • Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, Smith ME. 2019. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol 222:1936–1950.

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Mörth CM, Giesler R. 2009. Increasing abundance of soil fungi is a driver for 15N enrichment in soil profiles along a chronosequence undergoing isostatic rebound in northern Sweden. Oecologia 160:87–96.

    Article  PubMed  Google Scholar 

  • Wang Y, Naumann U, Eddelbuettel D, Wilshire J, Warton D. 2021. mvabund: Statistical Methods for Analysing Multivariate Abundance Data.

  • Zak DR, Pellitier PT, Argiroff WA, Castillo B, James TY, Nave LE, Averill C, Beidler KV, Bhatnagar J, Blesh J, Classen AT, Craig M, Fernandez CW, Gundersen P, Johansen R, Koide RT, Lilleskov EA, Lindahl BD, Nadelhoffer KJ, Phillips RP, Tunlid A. 2019. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol 223:33–39.

    Article  PubMed  Google Scholar 

  • Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, Busby PE, Christian N, Cornwell WK, Crowther TW, Flores-Moreno H, Floudas D, Gazis R, Hibbett D, Kennedy P, Lindner DL, Maynard DS, Milo AM, Nilsson RH, Powell J, Schildhauer M, Schilling J, Treseder KK. 2020. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol Rev 95:409–433.

    Article  PubMed  Google Scholar 

  • Zhang Y-Y, Wu W, Liu H. 2019. Factors affecting variations of soil pH in different horizons in hilly regions. PLOS ONE 14:e0218563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate field assistance from Evidelio Garcia and Carlos Espinosa and laboratory assistance from Rachel Van Allen and Alonso Favela. This research was funded by the Clark Research Award, Ferguson Fund, and the University of Illinois Graduate College Dissertation Travel Grant to GSS. The National Science Foundation Integrative Graduate Education and Research Traineeship Program (NSF IGERT 1069157) and the Illinois Distinguished Fellowship supported GSS. The Smithsonian Tropical Research Institute provided logistical support at the Fortuna Forest Reserve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia S. Seyfried.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1307 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfried, G.S., Corrales, A., Kent, A.D. et al. Watershed-scale Variation in Potential Fungal Community Contributions to Ectomycorrhizal Biogeochemical Syndromes. Ecosystems 26, 724–739 (2023). https://doi.org/10.1007/s10021-022-00788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00788-z

Keywords