Skip to main content

Advertisement

Log in

Contrasting Dynamics in the Fine Root Mass of Angiosperm and Gymnosperm Forests on the Global Scale

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Predicting forest carbon cycling requires the accurate assessment of large-scale patterns of fine root seasonal dynamics, and thorough comprehension of how biotic and abiotic factors exert direct and/or indirect control over the variation in fine root biomass (FB), necromass stocks (FN) and the biomass/necromass ratio (FBN). We analyzed 67 studies with 1119 observations of FB and FN and used structural equation modeling to examine the relative contributions of the forest biome (boreal versus temperate versus tropical), evolutionary division (angiosperms versus gymnosperms), climate (monthly versus annual), edaphic and geomorphic properties in determining FB, FN and FBN. Temperate forests had a greater FB but lower FN than tropical and boreal forests. Compared with angiosperm forests, gymnosperm forests had a significantly smaller FB and FN but a similar FBN on the global scale. Angiosperm forests had different seasonal patterns of FB, FN and FBN compared to gymnosperm forests in tropical and temperate biomes throughout a year. Climatic and edaphic variables had dominant effects on fine root dynamics. Geomorphic properties directly and/or indirectly mediated fine root dynamics by influencing soil and climatic conditions. Temperature and precipitation at the monthly and annual scales exhibited strong direct effects on FB, FN and FBN, and indirect effects mediated through soil properties. Our synthesis provides evidence that responses of fine roots to environmental factors vary with both evolutionary division and forest biome, suggesting that future climate changes may alter the competition relations among co-existing species (for example, angiosperms versus gymnosperms), belowground carbon stocks, and also ecosystem composition and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data used in the paper will be downloaded from FRED (https://roots.ornl.gov/).

References

  • Bakker MR. 1999. Fine-root parameters as indicators of sustainability of forest ecosystems. Forest Ecology and Management 122:7–16.

    Article  Google Scholar 

  • Berendse F, Scheffer M. 2009. The angiosperm radiation revisited, an ecological explanation for Darwin’s “abominable mystery.” Ecology Letters 12:865–872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bollen KA. 1987. Total, direct, and indirect effects in structural equation models. Sociological Methodology 17:37–69.

    Article  Google Scholar 

  • Bond W. 1989. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society 36:227–249.

    Article  Google Scholar 

  • Brodribb TJ, Holbrook N, Hill RS. 2005. Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure. Australian Journal of Botany 53:749–755.

    Article  Google Scholar 

  • Brunner I, Godbold DL. 2007. Tree roots in a changing world. Journal of Forest Research 12:78–82.

    Article  Google Scholar 

  • Brunner I, Sperisen C. 2013. Aluminum exclusion and aluminum tolerance in woody plants. Frontiers in Plant Science 4:172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari H-S, Jourdan C. 2013. Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant and Soil 362:357–372.

    Article  CAS  Google Scholar 

  • Cavelier J. 1992. Fine-root biomass and soil properties in a semideciduous and a lower montane rain forest in Panama. Plant and Soil 142:187–201.

    Article  CAS  Google Scholar 

  • Clemensson-Lindell A, Persson H. 1995. Fine-root vitality in a Norway spruce stand subjected to various nutrient supplies. Plant and Soil 168:167–172.

    Article  Google Scholar 

  • De Frenne P, Graae BJ, Rodríguez-Sánchez F, Kolb A, Chabrerie O, Decocq G, De Kort H, De Schrijver A, Diekmann M, Eriksson O, Gruwez R, Hermy M, Lenoir J, Plue J, Coomes DA, Verheyen K. 2013. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology 101:784–795.

    Article  Google Scholar 

  • Delgado J, González-Garrido L, Martínez T. 2012. How deep must we dig? Sampling depth effects on root biomass assessments in Mediterranean riparian buffers. Plant Biosystems 146:413–418.

    Article  Google Scholar 

  • Finér L, Helmisaari HS, Lohmus K, Majdi H, Brunner I, Borja I, Eldhuset T, Godbold D, Grebenc T, Konopka B. 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems 141:394–405.

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y. 2011a. Factors causing variation in fine root biomass in forest ecosystems. Forest Ecology and Management 261:265–277.

    Article  Google Scholar 

  • Finér L, Ohashi M, Noguchi K, Hirano Y. 2011b. Fine root production and turnover in forest ecosystems in relation to stand and environmental characteristics. Forest Ecology and Management 262:2008–2023.

    Article  Google Scholar 

  • Finér L, Zverev V, Palviainen M, Romanis T, Kozlov MV. 2019. Variation in fine root biomass along a 1000 km long latitudinal climatic gradient in mixed boreal forests of North-East Europe. Forest Ecology and Management 432:649–655.

    Article  Google Scholar 

  • Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo D, Hobbie SE, Holdaway RJ, Kembel SW, Makita N, Onipchenko VG, Picon-Cochard C, Reich PB, de la Riva EG, Smith SW, Soudzilovskaia NA, Tjoelker MG, Wardle DA, Roumet C. 2017. Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology 105:1182–1196.

    Article  Google Scholar 

  • Fukuzawa K, Shibata H, Takagi K, Satoh F, Koike T, Sasa K. 2007. Vertical distribution and seasonal pattern of fine-root dynamics in a cool–temperate forest in northern Japan: implication of the understory vegetation, Sasa dwarf bamboo. Ecological Research 22:485–495.

    Article  Google Scholar 

  • Gillman LN, Wright SD, Cusens J, McBride PD, Malhi Y, Whittaker RJ. 2015. Latitude, productivity and species richness. Global Ecology and Biogeography 24:107–117.

    Article  Google Scholar 

  • Gower S, Krankina O, Olson R, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications 11:1395–1411.

    Article  Google Scholar 

  • Grace JB. 2006. Structural equation modeling and natural systems: Cambridge. University Press.

    Book  Google Scholar 

  • Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ. 2008. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist 180:673–683.

    Article  PubMed  Google Scholar 

  • Han SH, Kim S, Chang H, Kim H-J, Khamzina A, Son Y. 2019. Soil depth- and root diameter-related variations affect root decomposition in temperate pine and oak forests. Journal of Plant Ecology 12:871–881.

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R. 2012. Perception of climate change. Proceedings of the National Academy of Sciences 109:14726–14727.

    Article  CAS  Google Scholar 

  • Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Merilä P, Nöjd P. 2009. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiology 29:445–456.

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Tanikawa T, Makita N. 2017. Biomass and morphology of fine roots in eight Cryptomeria japonica stands in soils with different acid-buffering capacities. Forest Ecology and Management 384:122–131.

    Article  Google Scholar 

  • Huston MA, Wolverton S. 2009. The global distribution of net primary production: resolving the paradox. Ecological Monographs 79:343–377.

    Article  Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411.

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences 94:7362–7366.

    Article  CAS  Google Scholar 

  • Jentschke G, Drexhage M, Fritz H-W, Fritz E, Schella B, Lee D-H, Gruber F, Heimann J, Kuhr M, Schmidt J. 2001. Does soil acidity reduce subsoil rooting in Norway spruce (Picea abies)? Plant and Soil 237:91–108.

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77.

    Article  Google Scholar 

  • Kohout P. 2017. Biogeography of ericoid mycorrhiza. In: Tedersoo L, Ed. Biogeography of mycorrhizal symbiosis, . Cham: Springer International Publishing. pp 179–193.

    Chapter  Google Scholar 

  • Kolesnikow VA. 1968. Cyclic renewal of roots in fruit plants. Leningrad: Nauka.

    Google Scholar 

  • Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist 203:863–872.

    Article  PubMed  Google Scholar 

  • Konôpka B, Yuste JC, Janssens IA, Ceulemans R. 2005. Comparison of fine root dynamics in Scots pine and Pedunculate oak in sandy soil. Plant and Soil 276:33–45.

    Article  Google Scholar 

  • Laughlin DC. 2011. Nitrification is linked to dominant leaf traits rather than functional diversity. Journal of Ecology 99:1091–1099.

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219–230.

    Article  Google Scholar 

  • Loiola PP, Carvalho GH, Batalha MA. 2016. Disentangling the roles of resource availability and disturbance in fine and coarse root biomass in savanna. Austral Ecology 41:255–262.

    Article  Google Scholar 

  • Majdi H, Persson H. 1995. Effects of ammonium sulphate application on the chemistry of bulk soil, rhizosphere, fine roots and fine-root distribution in a Picea abies (L.) Karst. stand. Plant and Soil 168:151–160.

    Article  Google Scholar 

  • Makkonen K, Helmisaari HS. 1999. Assessing fine-root biomass and production in a Scots pine stand–comparison of soil core and root ingrowth core methods. Plant and Soil 210:43–50.

    Article  CAS  Google Scholar 

  • McGroddy M, Silver WL. 2000. Variations in belowground carbon storage and soil CO2 flux rates along a wet tropical climate gradient. Biotropica 32:614–624.

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. 1993. Global climate change and terrestrial net primary production. Nature 363:234.

    Article  CAS  Google Scholar 

  • Mello S, Gonçalves J, Gava JL. 2007. Pre and post-harvest fine root growth in Eucalyptus grandis stands installed in sandy and loamy soils. Forest Ecology and Management 246:186–195.

    Article  Google Scholar 

  • Meng C, Tian D, Zeng H, Li Z, Yi C, Niu S. 2019. Global soil acidification impacts on belowground processes. Environmental Research Letters 14:074003.

    Article  CAS  Google Scholar 

  • Montagnoli A, Terzaghi M, Di Iorio A, Scippa G, Chiatante D. 2012. Fine-root seasonal pattern, production and turnover rate of European beech (Fagus sylvatica L.) stands in Italy Prealps: Possible implications of coppice conversion to high forest. Plant Biosystems 146:1012–1022.

    Article  Google Scholar 

  • Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, D’Amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K. 2001. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938.

    Article  Google Scholar 

  • Pacé M, Fenton NJ, Paré D, Bergeron Y. 2016. Ground-layer composition affects tree fine root biomass and soil nutrient availability in jack pine and black spruce forests under extreme drainage conditions. Canadian Journal of Forest Research 47:433–444.

    Article  Google Scholar 

  • Persson H. 1983. The distribution and productivity of fine roots in boreal forests. Plant and Soil 71:87–101.

    Article  Google Scholar 

  • Persson HÅ. 2012. The high input of soil organic matter from dead tree fine roots into the forest soil. International Journal of Forestry Research 2012:217402.

    Article  Google Scholar 

  • Persson HÅ, Stadenberg I. 2010. Fine root dynamics in a Norway spruce forest (Picea abies (L.) Karst) in eastern Sweden. Plant and Soil 330:329–344.

    Article  CAS  Google Scholar 

  • Reich PB, Luo Y, Bradford JB, Poorter H, Perry CH, Oleksyn J. 2014. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences 111:13721–13726.

    Article  CAS  Google Scholar 

  • Richter A, Hajdas I, Frossard E, Brunner I. 2013. Soil acidity affects fine root turnover of European beech. Plant Biosystems 147:50–59.

    Article  Google Scholar 

  • Rossatto DR, Silva LdCR, Villalobos-Vega R, Sternberg LdSL, Franco AC. 2012. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environmental and Experimental Botany 77:259–266.

    Article  Google Scholar 

  • Schenk HJ, Jackson RB. 2002. The global biogeography of roots. Ecological Monographs 72:311–328.

    Article  Google Scholar 

  • Solly EF, Brunner I, Helmisaari H-S, Herzog C, Leppälammi-Kujansuu J, Schöning I, Schrumpf M, Schweingruber FH, Trumbore SE, Hagedorn F. 2018. Unravelling the age of fine roots of temperate and boreal forests. Nat Commun 9:3006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyree M, Patiño S, Becker P. 1998. Vulnerability to drought induced embolism of Bornean heath and Dipterocarp forest trees. Tree Physiology 18:583–588.

    Article  PubMed  Google Scholar 

  • Vogt K, Persson H. 1991. Measuring growth and development of roots. In: Lassoie JP, Hinckley TM, Eds. Techniques and Approaches in Forest Tree Ecophysiology, . Boca Raton Florida: CRC Press. pp 477–501.

    Google Scholar 

  • Vogt KA, Edmonds RL, Grier CC. 1981. Seasonal changes in biomass and vertical distribution of mycorrhizal and fibrous-textured conifer fine roots in 23-and 180-year-old subalpine Abies amabilis stands. Canadian Journal of Forest Research 11:224–230.

    Article  Google Scholar 

  • Vogt KA, Grier CC, Vogt DJ. 1986. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research 15:303–377.

    Article  Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil 187:159–219.

    Article  CAS  Google Scholar 

  • Wang CG, Han SJ, Zhou YM, Yan CF, Cheng XB, Zheng XB, Li MH. 2012. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China. PLoS One 7:e31042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Han S, Zhou Y, Zhang J, Zheng X, Dai G, Li M-H. 2016. Fine root growth and contribution to soil carbon in a mixed mature Pinus koraiensis forest. Plant and Soil 400:275–284.

    Article  CAS  Google Scholar 

  • Wang CG, Chen Z, Brunner I, Zhang Z, Zhu X, Li J, Yin H, Guo W, Zhao T-H, Zheng X, Wang S, Geng Z, Shen S, Jin D, Li M-H. 2018a. Global patterns of dead fine root stocks in forest ecosystems. Journal of Biogeography 45:1378–1394.

    Article  Google Scholar 

  • Wang CG, Chen Z, Yin H, Guo W, Cao Y, Wang G, Sun B, Yan X, Li J, Zhao T-H, Brunner I, Dai G, Zheng Y, Zheng Y, Zu W, Li M-H. 2018b. The responses of forest fine root biomass/necromass ratio to environmental factors depend on mycorrhizal type and latitudinal region. Journal of Geophysical Research: Biogeosciences 123:1769–1788.

    Article  Google Scholar 

  • Wang CG, Brunner I, Zong S, Li M-H. 2019a. The dynamics of living and dead fine roots of forest biomes across the Northern Hemisphere. Forests 10:953.

    Article  Google Scholar 

  • Wang CG, McCormack ML, Guo D, Li J. 2019b. Global meta-analysis reveals different patterns of root tip adjustments by angiosperm and gymnosperm trees in response to environmental gradients. Journal of Biogeography 46:123–133.

    Article  Google Scholar 

  • Yuan ZY, Chen HYH. 2010. Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Critical Reviews in Plant Sciences 29:204–221.

    Article  CAS  Google Scholar 

  • Zadworny M, McCormack ML, Mucha J, Reich PB, Oleksyn J. 2016. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient. New Phytologist 212:389–399.

    Article  PubMed  Google Scholar 

  • Zhao H, Chen Y, Xiong D, Huang J, Wang W, Yang Z, Chen G, Yang Y. 2017. Fine root phenology differs among subtropical evergreen broadleaved forests with increasing tree diversities. Plant and Soil 420:481–491.

    Article  CAS  Google Scholar 

  • Zhu H, Fu B, Lv N, Wang S, Hou J. 2014. Multivariate control of root biomass in a semi-arid grassland on the Loess Plateau, China. Plant and Soil 379:315–324.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2019YFA0607301) and the Natural Science Foundation of China (41971052 and 42171051). We thank Melissa Dawes for providing linguistic suggestions and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunguo Wang.

Additional information

Author Contribution: CW designed study, analyzed data and wrote paper; IB analyzed data and wrote paper; SZ performed research and analyzed data; MHL designed study and wrote paper.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Brunner, I., Zong, S. et al. Contrasting Dynamics in the Fine Root Mass of Angiosperm and Gymnosperm Forests on the Global Scale. Ecosystems 26, 428–441 (2023). https://doi.org/10.1007/s10021-022-00766-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-022-00766-5

Keywords

Navigation