Abstract
Decomposition of plant litter is a fundamental ecological process, integral to soil formation, soil organic matter chemistry, and biogeochemical cycling. However, much of our understanding of decay dynamics focuses on rates of litter mass loss and therefore carbon dynamics, with relatively less exploration of the chemical nature of litter decomposition during which the degradation of litter structural and metabolic compounds into fragments are either metabolized or ultimately incorporated into soil humus. Our understanding of the patterns of changes in litter chemistry throughout decomposition is incomplete, as few studies have measured chemical content beyond initial litter chemistry and throughout decay, and particularly not chemistry beyond carbon and nitrogen. The existing literature also reports idiosyncratic instances of litter chemical convergence and divergence. We used archived litter decomposition samples and data from across the U.S. Long-Term Ecological Research Network to investigate the trajectory of a comprehensive array of litter chemistry, including nutrient, structural, and metabolic parameters, across a wide variety of plant functional types and ecosystems, throughout the first 70% of mass loss. Our results do not yield a universally common pattern of litter chemical trajectories across all functional types and regions, and very limited evidence of convergence or divergence in chemistry over time, mostly within the nutrient elements. We provide details about the behavior of individual chemical parameters to functional type and region over decay. Changes in plant communities driven by global change may alter nutrient cycling and SOM formation through persistence or divergence on litter chemistry inputs.
This is a preview of subscription content, access via your institution.



References
Ball B, Bradford M, Hunter M. 2009. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems 12:87–100.
Ball BA, Carrillo Y, Molina M. 2014. The influence of litter composition across the litter-soil interface on mass loss, nitrogen dynamics and the decomposer community. Soil Biology and Biochemistry 69:71–82.
Bélanger N, Collin A, Ricard-Piché J, Kembel SW, Rivest D. 2019. Microsite conditions influence leaf litter decomposition in sugar maple bioclimatic domain of Quebec. Biogeochemistry 145:107–26.
Bonanomi G, Cesarano G, Gaglione SA, Ippolito F, Sarker T, Rao MA. 2017. Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer. Plant and Soil 412:397–11.
Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL. 2010. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13:765–81.
Chen Z, Chen X, Wang C, Li C. 2020. Foliar cellulose and lignin degradation of two dominant tree species in a riparian zone of the Three Gorges Dam Reservoir. China. Frontiers in Plant Science 11:1912.
Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065–71.
Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Caliman A, Paquette A, Gutiérrez-Girón A, Humber A, Valdecantos A, Petraglia A, Alexander H, Augustaitis A, Saillard A, Fernández ACR, Sousa AI, Lillebø AI, da Rocha Gripp A, Francez A-J, Fischer A, Bohner A, Malyshev A, Andrić A, Smith A, Stanisci A, Seres A, Schmidt A, Avila A, Probst A, Ouin A, Khuroo AA, Verstraeten A, Palabral-Aguilera AN, Stefanski A, Gaxiola A, Muys B, Bosman B, Ahrends B, Parker B, Sattler B, Yang B, Juráni B, Erschbamer B, Ortiz CER, Christiansen CT, Carol Adair E, Meredieu C, Mony C, Nock CA, Chen C-L, Wang C-P, Baum C, Rixen C, Delire C, Piscart C, Andrews C, Rebmann C, Branquinho C, Polyanskaya D, Delgado DF, Wundram D, Radeideh D, Ordóñez-Regil E, Crawford E, Preda E, Tropina E, Groner E, Lucot E, Hornung E, Gacia E, Lévesque E, Benedito E, Davydov EA, Ampoorter E, Bolzan FP, Varela F, Kristöfel F, Maestre FT, Maunoury-Danger F, Hofhansl F, Kitz F, Sutter F, Cuesta F, de Almeida Lobo F, de Souza FL, Berninger F, Zehetner F, Wohlfahrt G, Vourlitis G, Carreño-Rocabado G, Arena G, Pinha GD, González G, Canut G, Lee H, Verbeeck H, Auge H, Pauli H, Nacro HB, Bahamonde HA, Feldhaar H, Jäger H, Serrano HC, Verheyden H, Bruelheide H, Meesenburg H, Jungkunst H, Jactel H, Shibata H, Kurokawa H, Rosas HL, Rojas Villalobos HL, Yesilonis I, Melece I, Van Halder I, Quirós IG, Makelele I, Senou I, Fekete I, Mihal I, Ostonen I, Borovská J, Roales J, Shoqeir J, Lata J-C, Theurillat J-P, Probst J-L, Zimmerman J, Vijayanathan J, Tang J, Thompson J, Doležal J, Sanchez-Cabeza J-A, Merlet J, Henschel J, Neirynck J, Knops J, Loehr J, von Oppen J, Þorláksdóttir JS, Löffler J, Cardoso-Mohedano J-G, Benito-Alonso J-L, Torezan JM, Morina JC, Jiménez JJ, Quinde JD, Alatalo J, Seeber J, Stadler J, Kriiska K, Coulibaly K, Fukuzawa K, Szlavecz K, Gerhátová K, Lajtha K, Käppeler K, Jennings KA, Tielbörger K, Hoshizaki K, Green K, Yé L, Pazianoto LHR, Dienstbach L, Williams L, Yahdjian L, Brigham LM, van den Brink L, Rustad L, Zhang L, Morillas L, Xiankai L, Carneiro LS, Di Martino L, Villar L, Bader MY, Morley M, Lebouvier M, Tomaselli M, Sternberg M, Schaub M, Santos-Reis M, Glushkova M, Torres MGA, Giroux M-A, de Graaff M-A, Pons M-N, Bauters M, Mazón M, Frenzel M, Didion M, Wagner M, Hamid M, Lopes ML, Apple M, Schädler M, Weih M, Gualmini M, Vadeboncoeur MA, Bierbaumer M, Danger M, Liddell M, Mirtl M, Scherer-Lorenzen M, Růžek M, Carbognani M, Di Musciano M, Matsushita M, Zhiyanski M, Puscas M, Barna M, Ataka M, Jiangming M, Alsafran M, Carnol M, Barsoum N, Tokuchi N, Eisenhauer N, Lecomte N, Filippova N, Hölzel N, Ferlian O, Romero O, Pinto OB, Peri P, Weber P, Vittoz P, Turtureanu PD, Fleischer P, Macreadie P, Haase P, Reich P, Petřík P, Choler P, Marmonier P, Muriel P, Ponette Q, Guariento RD, Canessa R, Kiese R, Hewitt R, Rønn R, Adrian R, Kanka R, Weigel R, Gatti RC, Martins RL, Georges R, Meneses RI, Gavilán RG, Dasgupta S, Wittlinger S, Puijalon S, Freda S, Suzuki S, Charles S, Gogo S, Drollinger S, Mereu S, Wipf S, Trevathan-Tackett S, Löfgren S, Stoll S, Trogisch S, Hoeber S, Seitz S, Glatzel S, Milton SJ, Dousset S, Mori T, Sato T, Ise T, Hishi T, Kenta T, Nakaji T, Michelan TS, Camboulive T, Mozdzer TJ, Scholten T, Spiegelberger T, Zechmeister T, Kleinebecker T, Hiura T, Enoki T, Ursu T-M, di Cella UM, Hamer U, Klaus VH, Rêgo VM, Di Cecco V, Busch V, Fontana V, Piscová V, Carbonell V, Ochoa V, Bretagnolle V, Maire V, Farjalla V, Zhou W, Luo W, McDowell WH, Hu Y, Utsumi Y, Kominami Y, Zaika Y, Rozhkov Y, Kotroczó Z, Tóth Z. 2018. Early stage litter decomposition across biomes. Science of the Total Environment 628–629:1369–94.
Du N, Li W, Qiu L, Zhang Y, Wei X, Zhang X. 2020. Mass loss and nutrient release during the decomposition of sixteen types of plant litter with contrasting quality under three precipitation regimes. Ecology and Evolution 10:3367–82.
Duckworth JC, Kent M, Ramsay PM. 2000. Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography: Earth and Environment 24:515–42.
Fanin N, Bezaud S, Sarneel JM, Cecchini S, Nicolas M, Augusto L. 2019. Relative Importance of Climate, Soil and Plant Functional Traits During the Early Decomposition Stage of Standardized Litter. Ecosystems.
Filley TR, McCormick MK, Crow SE, Szlavecz K, Whigham DF, Johnston CT, van den Heuvel RN. 2008. Comparison of the chemical alteration trajectory of Liriodendron tulipifera L leaf litter among forests with different earthworm abundance. Journal of Geophysical Research: Biogeosciences 113:G01027.
Finzi AC, Canham CD. 1998. Non-additive effects of litter mixtures on net N mineralization in a southern New England forest. Forest Ecology and Management 105:129–36.
Franklin J, Serra-Diaz JM, Syphard AD, Regan HM. 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences 113:3725–34.
Fyllas NM, Michelaki C, Galanidis A, Evangelou E, Zaragoza-Castells J, Dimitrakopoulos PG, Tsadilas C, Arianoutsou M, Lloyd J. 2020. Functional trait variation among and within species and plant functional types in mountainous mediterranean forests. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00212.
Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150:278–86.
Guo C, Cornelissen JHC, Tuo B, Ci H, Yan E-R. 2020. Invertebrate phenology modulates the effect of the leaf economics spectrum on litter decomposition rate across 41 subtropical woody plant species. Functional Ecology 34:735–46.
Harmon ME, Silver WL, Fasth B, Chen HUA, Burke IC, Parton WJ, Hart SC, Currie WS, Lidet. 2009. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Global Change Biology 15:1320–38.
Hernández DL, Hobbie SE. 2008. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 158:535–43.
Hobbie SE. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8:644–56.
Hoeber S, Fransson P, Weih M, Manzoni S. 2020. Leaf litter quality coupled to Salix variety drives litter decomposition more than stand diversity or climate. Plant and Soil. 453:313–28.
Homann PS. 2012. Convergence and divergence of nutrient stoichiometry during forest litter decomposition. Plant and Soil 358:251–63.
Hoorens B, Stroetenga M, Aerts R. 2010. Litter Mixture Interactions at the Level of Plant Functional Types are Additive. Ecosystems 13:90–8.
Hunter MD, Adl S, Pringle CM, Coleman DC. 2003. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia 47:101–15.
Joly F-X, Coq S, Coulis M, David J-F, Hättenschwiler S, Mueller CW, Prater I, Subke J-A. 2020. Detritivore conversion of litter into faeces accelerates organic matter turnover. Communications Biology 3:660.
Kardol P, Cregger MA, Campany CE, Classen AT. 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767–81.
Killingbeck KT, Smith DL, Marzolof GR. 1982. Chemical changes in tree leaves during decomposition in a tallgass prairie stream. Ecology 63:585–89.
Kohl L, Myers-Pigg A, Edwards KA, Billings SA, Warren J, Podrebarac FA, Ziegler SE. 2021. Microbial inputs at the litter layer translate climate into altered organic matter properties. Global Change Biology 27:435–53.
Komatsu KJ, Avolio ML, Lemoine NP, Isbell F, Grman E, Houseman GR, Koerner SE, Johnson DS, Wilcox KR, Alatalo JM, Anderson JP, Aerts R, Baer SG, Baldwin AH, Bates J, Beierkuhnlein C, Belote RT, Blair J, Bloor JMG, Bohlen PJ, Bork EW, Boughton EH, Bowman WD, Britton AJ, Cahill JF, Chaneton E, Chiariello NR, Cheng J, Collins SL, Cornelissen JHC, Du G, Eskelinen A, Firn J, Foster B, Gough L, Gross K, Hallett LM, Han X, Harmens H, Hovenden MJ, Jagerbrand A, Jentsch A, Kern C, Klanderud K, Knapp AK, Kreyling J, Li W, Luo Y, McCulley RL, McLaren JR, Megonigal JP, Morgan JW, Onipchenko V, Pennings SC, Prevéy JS, Price JN, Reich PB, Robinson CH, Russell FL, Sala OE, Seabloom EW, Smith MD, Soudzilovskaia NA, Souza L, Suding K, Suttle KB, Svejcar T, Tilman D, Tognetti P, Turkington R, White S, Xu Z, Yahdjian L, Yu Q, Zhang P, Zhang Y. 2019. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences 116:17867–73.
Li Y, Chen N, Harmon ME, Li Y, Cao X, Chappell MA, Mao J. 2015. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition. Scientific Reports 5:15783.
Liu D, Keiblinger KM, Leitner S, Mentler A, Zechmeister-Boltenstern S. 2016. Is there a convergence of deciduous leaf litter stoichiometry, biochemistry and microbial population during decay? Geoderma 272:93–100.
Lovett GM, Arthur MA, Crowley KF. 2016. Effects of Calcium on the Rate and Extent of Litter Decomposition in a Northern Hardwood Forest. Ecosystems 19:87–97.
Lovett GM, Mitchell MJ. 2004. Sugar maple and nitrogen cycling in the forests of eastern North America. Frontiers in Ecology and the Environment 2:81–8.
Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant and Soil 115:189–98.
Moore TR, Trofymow JA, Prescott CE, Titus BD, Group CW. 2011. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant and Soil 339:163–75.
Moorhead DL, Reynolds JF. 1993. Changing carbon chemistry of buried creosote bush litter during decomposition in the northern Chihuahuan Desert. American Midland Naturalist 130:83–9.
Mudrick DA, Hoosein M, Hicks RR, Townsend EC. 1994. Decomposition of leaf litter in an Appalachian forest: effects of leaf species, aspect, slope position and time. Forest Ecology and Management 68:231–50.
Nielsen UN, Ball BA. 2015. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology 21:1407–21.
Ochoa-Hueso R, Delgado-Baquerizo M, An King PT, Benham M, Arca V, Power SA. 2019. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry 129:144–52.
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315:361–64.
Prather CM, Belovsky GE, Cantrell SA, González G. 2018. Tropical herbivorous phasmids, but not litter snails, alter decomposition rates by modifying litter bacteria. Ecology 99:782–91.
Preston CM, Nault JR, Trofymow JA. 2009. Chemical Changes During 6 Years of Decomposition of 11 Litters in Some Canadian Forest Sites. Part 2. 13C Abundance, Solid-State 13C NMR Spectroscopy and the Meaning of “Lignin.” Ecosystems 12:1078–102.
Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB. 2003. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. International Journal of Plant Sciences 164:S143-64.
Richardson BA, Richardson MJ, Gonzalez G, Shiels AB, Srivastava DS. 2010. A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes. Ecosystems 13:286–301.
Rosenfield MV, Keller JK, Clausen C, Cyphers K, Funk JL. 2020. Leaf traits can be used to predict rates of litter decomposition. Oikos 129:1589–96.
Rustad LE. 1994. Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology 75:867–79.
Schowalter TD, Zhang YL, Sabin TE. 1998. Decomposition and Nutrient Dynamics of Oak Quercus spp. Logs after Five Years of Decomposition. Ecography 21:3–10.
Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–19.
Sullivan NH, Bowden WB, McDowell WH. 1999. Short-term disappearance of foliar litter in three species before and after a hurricane. Biotropica 31:382–93.
Swift MJ, Heal OW, Anderson JM. 1979. Decomposition in terrestrial ecosystems. Los Angeles: University of California Press.
Throop HL, Archer SR. 2007. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. Ecological Applications 17:1809–23.
UNDP. 2007. World Urbanization Prospects: The 2007 Revision Population Database: United Nations Population Division, Dept. of Economics and Social Affairs.
van Diepen LTA, Frey SD, Sthultz CM, Morrison EW, Minocha R, Pringle A. 2015. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 6:art205.
van Huysen TL, Perakis SS, Harmon ME. 2016. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant and Soil 406:1–14.
Van Soest PJ. 1994. Fiber and physicochemical properties of feeds. In: Ithaca NY, Ed. Nutritional Ecology of the Ruminant, . Cornell University Press. pp 140–55.
Wallenstein MD, Haddix ML, Ayres E, Steltzer H, Magrini-Bair KA, Paul EA. 2013. Litter chemistry changes more rapidly when decomposed at home but converges during decomposition-transformation. Soil Biology and Biochemistry 57:311–19.
Wang L, Chen Y, Zhou Y, Zheng H, Xu Z, Tan B, You C, Zhang L, Li H, Guo L, Wang L, Huang Y, Zhang J, Liu Y. 2021. Litter chemical traits strongly drove the carbon fractions loss during decomposition across an alpine treeline ecotone. Science of The Total Environment 753:142287.
Wang Y, Zheng J, Boyd SE, Xu Z, Zhou Q. 2019. Effects of litter quality and quantity on chemical changes during eucalyptus litter decomposition in subtropical Australia. Plant and Soil 442:65–78.
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH. 2004. Ecological Linkages Between Aboveground and Belowground Biota. Science 304:1629–33.
Wickings K, Grandy AS, Reed SC, Cleveland CC. 2012. The origin of litter chemical complexity during decomposition. Ecology Letters 15:1180–88.
Wickings K, Stuart Grandy A, Reed S, Cleveland C. 2011. Management intensity alters decomposition via biological pathways. Biogeochemistry 104:365–79.
Zhou S, Butenschoen O, Barantal S, Handa IT, Makkonen M, Vos V, Aerts R, Berg MP, McKie B, Van Ruijven J, Hättenschwiler S, Scheu S. 2020. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. Journal of Ecology. 108:2283–97.
Zou X, Zucca CP, Waide RB, McDowell WH. 1995. Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico. Forest Ecology and Management 78:147–57.
Acknowledgements
The ideas presented in this paper are from the discussions during a working group of the LTER ASM, and we thank working group members Jennie DeMarco, Grizelle González, D. Jean Lodge, and Marshall McDaniel for their contributions. This work would not have been possible without the support of Dr. Henry Gholz. Students Katelyn Berry, Paul Cattelino, Stephen Peters-Collaer, Patrick Susman, and Miranda Vega provided invaluable help with the laboratory analyses. Scott Greenwood and Stuart Grandy, University of New Hampshire, provided py-GCMS analyses. Cathy Kochert, Roy Erickson, and Sara Ryan at the Goldwater Environmental Lab at ASU provided analytical services. Denise Schmidt at Cary institute assisted with CN analysis.
Funding
This research was supported by National Science Foundation’s Division of Environmental Biology grants to PIs Ball (NSF DEB-1537920), Christenson (NSF DEB-1537754), and Wickings (NSF DEB-1537990).
Author information
Authors and Affiliations
Corresponding author
Additional information
Author Contributions BB, LC, KW conceived and designed the study, and performed the sample analysis. BB led the data analysis and authorship of the paper, and LC and KW provided substantial input and feedback.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ball, B.A., Christenson, L.M. & Wickings, K.G. A Cross-System Analysis of Litter Chemical Dynamics Throughout Decomposition. Ecosystems 25, 1792–1808 (2022). https://doi.org/10.1007/s10021-022-00749-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10021-022-00749-6