Skip to main content

Advertisement

Log in

Ocean Warming Will Reduce Standing Biomass in a Tropical Western Atlantic Reef Ecosystem

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Ocean warming is altering life on Earth from individuals to ecosystems. The impacts on standing biomass and food webs functioning are less evident due to the paucity of data and difficulty to generate reliable models. We modeled the food web of a tropical near-pristine reef ecosystem and analyzed changes on living biomass across trophic levels as a response to ocean warming over the twenty-first century. By the end of the century, total standing biomass will decrease by 1%, 8% and 44% under different ocean warming scenarios (from reduced RCP 2.6 emission scenario to business-as-usual RCP 8.5 scenario). As total biomass decreases, the ecosystem structure shifts favoring invertivorous fishes, suspension feeding zooplankton, and algal turfs while corals collapse. The mean trophic transfer efficiency is expected to decrease by ~ 2% between 2012 and 2100 under the RCP 8.5, while biomass residence time (mean time that a unit of biomass remains in the ecosystem) will decrease by ~ 10%. Such food web degradation can alter the dominant biomass flow jeopardizing biomass replenishment, resulting in a less productive ecosystem with increasing dependency on pelagic energy subsidies, reducing the resilience of tropical reef ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data Availability

The raw data and the R code for data analysis that support the findings of this study are freely available in the GitHub repository: https://github.com/leomarameo7/Atoll_Rocas_project. Biological parameters can be consulted in Fishbase website (https://www.fishbase.org) and AquaMaps (https://www.aquamaps.org/). Ecopath model file is available on request to the corresponding author.

References

  • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716–723.

    Article  Google Scholar 

  • Allgeier JE, Layman CA, Mumby PJ, Rosemond AD. 2014. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Global Change Biology 20:2459–2472.

    Article  PubMed  Google Scholar 

  • Allgeier JE, Valdivia A, Cox C, Layman CA. 2016. Fishing down nutrients on coral reefs. Nat Commun 7:12461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angilletta MJ. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.

    Book  Google Scholar 

  • Araújo JN, Martins AS, Bonecker ACT, Esteves AM, Tenenbaum DR, Gonzalez-rodriguez E, Reis ER, Lavrado HP, Lima LM, Costa PAS, Paranhos R, Bonecker SLC, Disaró ST, Rodrigues SV. 2017. Modelos Ecopath da plataforma continental e do talude da Bacia de Campos: análise das propriedades ecossistêmicas e do efeito da sazonalidade. In: Modelagem Ecossistêmica para integração e manejo na Bacia de Campos (Atlântico sudoeste). Vol. 8. Rio de janeiro: Elsevier Brazil. pp 131–87.

  • Bellwood DR, Tebbett SB, Bellwood O, Mihalitsis M, Morais RA, Streit RP, Fulton CJ. 2018. The role of the reef flat in coral reef trophodynamics: Past, present, and future. Ecology and Evolution 8:4108–4119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bentley JW, Serpetti N, Heymans JJ. 2017. Investigating the potential impacts of ocean warming on the Norwegian and Barents Seas ecosystem using a time-dynamic food-web model. Ecological Modelling 360:94–107.

    Article  Google Scholar 

  • Beyer HL, Kennedy EV, Beger M, Chen CA, Cinner JE, Darling ES, Eakin CM, Gates RD, Heron SF, Knowlton N, Obura DO, Palumbi SR, Possingham HP, Puotinen M, Runting RK, Skirving WJ, Spalding M, Wilson KA, Wood S, Veron JE, Hoegh-Guldberg O. 2018. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters 11:e12587.

  • Blanchard JL, Jennings S, Holmes R, Harle J, Merino G, Allen JI, Holt J, Dulvy NK, Barange M. 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences 367:2979–2989.

    Article  Google Scholar 

  • Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, Moyes F, Magurran A, McGill B, Myers-Smith IH, Winter M, Bjorkman AD, Bowler DE, Byrnes JEK, Gonzalez A, Hines J, Isbell F, Jones HP, Navarro LM, Thompson PL, Vellend M, Waldock C, Dornelas M. 2019. The geography of biodiversity change in marine and terrestrial assemblages. Science 366:339–345.

    Article  CAS  PubMed  Google Scholar 

  • Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, Halloran P, Heinze C, Ilyina T, Séférian R, Tjiputra J, Vichi M. 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10:6225–6245.

    Article  Google Scholar 

  • Bouchard SS, Bjorndal KA. 2000. Sea Turtles as Biological Transporters of Nutrients and Energy from Marine to Terrestrial Ecosystems. Ecology 81:2305–2313.

    Article  Google Scholar 

  • Bryndum-Buchholz A, Tittensor DP, Blanchard JL, Cheung WWL, Coll M, Galbraith ED, Jennings S, Maury O, Lotze HK. 2019. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology 25:459–472.

    Article  PubMed  Google Scholar 

  • Burrows MT, Hawkins SJ, Moore JJ, Adams L, Sugden H, Firth L, Mieszkowska N. 2020. Global-scale species distributions predict temperature-related changes in species composition of rocky shore communities in Britain. Global Change Biology 26:2093–2105.

    Article  Google Scholar 

  • Carpenter RC. 1986. Partitioning Herbivory and Its Effects on Coral Reef Algal Communities. Ecological Monographs 56:345–363.

    Article  Google Scholar 

  • Childress ES, Letcher BH. 2017. Estimating thermal performance curves from repeated field observations. Ecology 98:1377–1387.

    Article  PubMed  Google Scholar 

  • Christensen V, Pauly D. 1993. Trophic models of aquatic ecosystems. Manila, Philippines: ICLARM Conf. Proc.

  • Christensen V, Walters CJ. 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecol Model 172:109–139.

    Article  Google Scholar 

  • Colléter M, Valls A, Guitton J, Gascuel D, Pauly D, Christensen V. 2015. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecological Modelling 302:42–53.

    Article  Google Scholar 

  • Corrales X, Coll M, Ofir E, Heymans JJ, Steenbeek J, Goren M, Edelist D, Gal G. 2018. Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming. Scientific Reports 8:1–16.

    Article  CAS  Google Scholar 

  • Curnock MI, Marshall NA, Thiault L, Heron SF, Hoey J, Williams G, Taylor B, Pert PL, Goldberg J. 2019. Shifts in tourists’ sentiments and climate risk perceptions following mass coral bleaching of the Great Barrier Reef. Nature Climate Change 9:535–541.

    Article  Google Scholar 

  • Dulvy NK, Freckleton RP, Polunin NVC. 2004. Coral reef cascades and the indirect effects of predator removal by exploitation. Ecology Letters 7:410–416.

    Article  Google Scholar 

  • Eddy TD, Bernhardt JR, Blanchard JL, Cheung WWL, Colléter M, du Pontavice H, Fulton EA, Gascuel D, Kearney KA, Petrik CM, Roy T, Rykaczewski RR, Selden R, Stock CA, Wabnitz CCC, Watson RA. 2021. Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency. Trends in Ecology & Evolution 36:76–86.

    Article  Google Scholar 

  • Fredston-Hermann A, Selden R, Pinsky M, Gaines SD, Halpern BS. 2020. Cold range edges of marine fishes track climate change better than warm edges. Global Change Biology 26:2908–2922.

    Article  PubMed  Google Scholar 

  • Gibert JP. 2019. Temperature directly and indirectly influences food web structure. Scientific Reports 9:1–8.

    Article  CAS  Google Scholar 

  • Goatley C, Bonaldo R, Fox R, Bellwood D. 2016. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecology and Society 21.

  • Gove JM, McManus MA, Neuheimer AB, Polovina JJ, Drazen JC, Smith CR, Merrifield MA, Friedlander AM, Ehses JS, Young CW, Dillon AK, Williams GJ. 2016. Near-island biological hotspots in barren ocean basins. Nature Communications 7:10581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham NAJ, Wilson SK, Carr P, Hoey AS, Jennings S, MacNeil MA. 2018. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559:250–253.

    Article  CAS  PubMed  Google Scholar 

  • Haas AF, Fairoz MFM, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA, Giles S, Hatay M, Hisakawa N, Knowles B, Lim YW, Maughan H, Pantos O, Roach TNF, Sanchez SE, Silveira CB, Sandin S, Smith JE, Rohwer F. 2016. Global microbialization of coral reefs. Nature Microbiology 1:1–7.

    Article  CAS  Google Scholar 

  • Heymans JJ, Coll M, Link JS, Mackinson S, Steenbeek J, Walters C, Christensen V. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Model 331:173–184.

    Article  Google Scholar 

  • Huey RB, Kingsolver JG. 2019. Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms. The American Naturalist 194:E140–E150.

    Article  PubMed  Google Scholar 

  • Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M. 2017. Coral reefs in the Anthropocene. Nature 546:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO. 2020. Trophic interactions will expand geographically but be less intense as oceans warm. Global Change Biology n/a.

  • Jales MC, Feitosa FA do N, Koening ML, Montes M de JF, Araújo Filho MC de, Silva RA da. 2015. Phytoplankton biomass dynamics and environmental variables around the Rocas Atoll Biological Reserve, South Atlantic. Brazilian Journal of Oceanography 63:443–454.

    Article  Google Scholar 

  • James AK, Washburn L, Gotschalk C, Maritorena S, Alldredge A, Nelson CE, Hench JL, Leichter JJ, Wyatt ASJ, Carlson CA. 2020. An Island Mass Effect Resolved Near Mo’orea, French Polynesia. Front Mar Sci 7.

  • Kaschner K, Kesner-reyes K, Garilao C, Rius-Barile J, Rees T, Froese R. 2019. AquaMaps: Predicted range maps for aquatic species. World wide web electronic publication.

  • Klumpp D, Mckinnon A. 1992. Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: Dynamics at different spatial scales. Marine Ecology-Progress Series - MAR ECOL-PROGR SER 86:77–89.

    Article  Google Scholar 

  • Kwiatkowski L, Aumont O, Bopp L. 2019. Consistent trophic amplification of marine biomass declines under climate change. Global Change Biology 25:218–229.

    Article  PubMed  Google Scholar 

  • Libralato S, Caccin A, Pranovi F. 2015. Modeling species invasions using thermal and trophic niche dynamics under climate change. Front Mar Sci 0.

  • Longo GO, Morais RA, Martins CDL, Mendes TC, Aued AW, Cândido DV, Oliveira JC de, Nunes LT, Fontoura L, Sissini MN, Teschima MM, Silva MB, Ramlov F, Gouvea LP, Ferreira CEL, Segal B, Horta PA, Floeter SR. 2015. Between-Habitat Variation of Benthic Cover, Reef Fish Assemblage and Feeding Pressure on the Benthos at the Only Atoll in South Atlantic: Rocas Atoll, NE Brazil. PLOS ONE 10:e0127176.

  • Lotze HK, Tittensor DP, Bryndum-Buchholz A, Eddy TD, Cheung WWL, Galbraith ED, Barange M, Barrier N, Bianchi D, Blanchard JL, Bopp L, Büchner M, Bulman CM, Carozza DA, Christensen V, Coll M, Dunne JP, Fulton EA, Jennings S, Jones MC, Mackinson S, Maury O, Niiranen S, Oliveros-Ramos R, Roy T, Fernandes JA, Schewe J, Shin Y-J, Silva TAM, Steenbeek J, Stock CA, Verley P, Volkholz J, Walker ND, Worm B. 2019. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. PNAS 116:12907–12912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH. 2016. A Trait-Based Approach to Advance Coral Reef Science. Trends in Ecology & Evolution 31:419–428.

    Article  Google Scholar 

  • Magel JMT, Burns JHR, Gates RD, Baum JK. 2019. Effects of bleaching-associated mass coral mortality on reef structural complexity across a gradient of local disturbance. Scientific Reports 9:1–12.

    Article  CAS  Google Scholar 

  • Marshell A, Mumby PJ. 2015. The role of surgeonfish (Acanthuridae) in maintaining algal turf biomass on coral reefs. Journal of Experimental Marine Biology and Ecology 473:152–160.

    Article  Google Scholar 

  • Maureaud A, Gascuel D, Colléter M, Palomares MLD, Pontavice HD, Pauly D, Cheung WWL. 2017. Global change in the trophic functioning of marine food webs. PLOS ONE 12:e0182826.

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR. 2015. Marine defaunation: Animal loss in the global ocean. Science 347.

  • Morais RA, Depczynski M, Fulton C, Marnane M, Narvaez P, Huertas V, Brandl SJ, Bellwood DR. 2020. Severe coral loss shifts energetic dynamics on a coral reef. Functional Ecology n/a.

  • Mourier J, Maynard J, Parravicini V, Ballesta L, Clua E, Domeier ML, Planes S. 2016. Extreme Inverted Trophic Pyramid of Reef Sharks Supported by Spawning Groupers. Current Biology 26:2011–2016.

    Article  CAS  PubMed  Google Scholar 

  • Munday PL, Warner RR, Monro K, Pandolfi JM, Marshall DJ. 2013. Predicting evolutionary responses to climate change in the sea. Ecology Letters 16:1488–1500.

    Article  PubMed  Google Scholar 

  • Neubauer P, Andersen KH. 2020. Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology. Conserv Physiol 7.

  • Nolan C, Overpeck JT, Allen JRM, Anderson PM, Betancourt JL, Binney HA, Brewer S, Bush MB, Chase BM, Cheddadi R, Djamali M, Dodson J, Edwards ME, Gosling WD, Haberle S, Hotchkiss SC, Huntley B, Ivory SJ, Kershaw AP, Kim S-H, Latorre C, Leydet M, Lézine A-M, Liu K-B, Liu Y, Lozhkin AV, McGlone MS, Marchant RA, Momohara A, Moreno PI, Müller S, Otto-Bliesner BL, Shen C, Stevenson J, Takahara H, Tarasov PE, Tipton J, Vincens A, Weng C, Xu Q, Zheng Z, Jackson ST. 2018. Past and future global transformation of terrestrial ecosystems under climate change. Science 361:920–923.

    Article  CAS  PubMed  Google Scholar 

  • Otero XL, De La Peña-Lastra S, Pérez-Alberti A, Ferreira TO, Huerta-Diaz MA. 2018. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nature Communications 9:246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palomares MLD, Pauly D. 1998. Predicting food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar Freshwat Res 49:447–453.

    Article  CAS  Google Scholar 

  • Pauly D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J Mar Sci 39:175–192.

    Article  Google Scholar 

  • Payne NL, Smith JA, van der Meulen DE, Taylor MD, Watanabe YY, Takahashi A, Marzullo TA, Gray CA, Cadiou G, Suthers IM. 2016. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Functional Ecology 30:903–912.

    Article  Google Scholar 

  • Pereira NS, Manso V, a. V, Macedo RJA, Dias JMA, Silva AMC. 2013. Detrital carbonate sedimentation of the Rocas Atoll, South Atlantic. An Acad Bras Ciênc 85:57–72.

    Article  Google Scholar 

  • du Pontavice H, Gascuel D, Reygondeau G, Maureaud A, Cheung WWL. 2020. Climate change undermines the global functioning of marine food webs. Global Change Biology 26:1306–1318.

    Article  PubMed  Google Scholar 

  • Pontavice H du, Gascuel D, Reygondeau G, Stock C, Cheung WWL. 2021. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Global Change Biology n/a.

  • Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J, Rama B. 2019. Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.

  • Pratchett MS, Hoey AS, Wilson SK, Messmer V, Graham NAJ. 2011. Changes in Biodiversity and Functioning of Reef Fish Assemblages following Coral Bleaching and Coral Loss. Diversity 3:424–452.

    Article  Google Scholar 

  • Reynolds RW, Banzon VF. 2008. NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature (OISST) Analysis, Version 2. NOAA National Centers for Environmental. https://doi.org/10.7289/V5SQ8XB5.

    Article  Google Scholar 

  • Richardson LE, Graham NAJ, Pratchett MS, Eurich JG, Hoey AS. 2018. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob Change Biol 24:3117–3129.

    Article  Google Scholar 

  • Robinson JPW, Wilson SK, Jennings S, Graham NAJ. 2019. Thermal stress induces persistently altered coral reef fish assemblages. Glob Change Biol 25:2739–2750.

    Article  Google Scholar 

  • Rogers A, Blanchard JL, Mumby PJ. 2018. Fisheries productivity under progressive coral reef degradation. Journal of Applied Ecology 55:1041–1049.

    Article  Google Scholar 

  • Scott E, Serpetti N, Steenbeek J, Heymans JJ. 2016. A Stepwise Fitting Procedure for automated fitting of Ecopath with Ecosim models. SoftwareX 5:25–30.

    Article  Google Scholar 

  • Serpetti N, Baudron AR, Burrows MT, Payne BL, Helaouët P, Fernandes PG, Heymans JJ. 2017. Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries. Scientific Reports 7:1–15.

    Article  CAS  Google Scholar 

  • Steenbeek J, Corrales X, Platts M, Coll M. 2018. Ecosampler: A new approach to assessing parameter uncertainty in Ecopath with Ecosim. SoftwareX 7:198–204.

    Article  Google Scholar 

  • Sunday J, Bates A, Kearney M, Colwell R, Dulvy N, Longino J, Huey R. 2014. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America 111.

  • Sydeman WJ, Poloczanska E, Reed TE, Thompson SA. 2015. Climate change and marine vertebrates. Science 350:772–777.

    Article  CAS  PubMed  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA. 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93:485–498.

    Article  Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A Global Pattern of Thermal Adaptation in Marine Phytoplankton. Science 338:1085–1088.

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Nagelkerken I, Goldenberg SU, Fordham DA. 2018. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLOS Biology 16:e2003446.

  • Vermeij MJA, van der Heijden RA, Olthuis JG, Marhaver KL, Smith JE, Visser PM. 2013. Survival and dispersal of turf algae and macroalgae consumed by herbivorous coral reef fishes. Oecologia 171:417–425.

    Article  PubMed  Google Scholar 

  • Waldock C, Stuart-Smith RD, Edgar GJ, Bird TJ, Bates AE. 2019. The shape of abundance distributions across temperature gradients in reef fishes. Ecology Letters 22:685–696.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters C, Christensen V, Pauly D. 1997. Structuring dynamic models of exploited ecosystems from trophic mass-balance assessments. Reviews in Fish Biology and Fisheries 7:139–172.

    Article  Google Scholar 

  • Walters C, Pauly D, Christensen V, Kitchell JF. 2000. Representing Density Dependent Consequences of Life History Strategies in Aquatic Ecosystems: EcoSim II. Ecosystems 3:70–83.

    Article  Google Scholar 

  • Williams GJ, Graham NAJ, Jouffray J-B, Norström AV, Nyström M, Gove JM, Heenan A, Wedding LM. 2019. Coral reef ecology in the Anthropocene. Functional Ecology 33:1014–1022.

    Article  Google Scholar 

  • Williams JJ, Papastamatiou YP, Caselle JE, Bradley D, Jacoby DMP. 2018. Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proceedings of the Royal Society B: Biological Sciences 285:20172456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Takahashi D, Hartvig M, Andersen KH. 2017. Food-web dynamics under climate change. Proceedings of the Royal Society B: Biological Sciences 284:20171772.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Renato Morais for highly constructive comments on earlier version of this manuscript. We further thank Dr. Hubert du Pontavice to help us in the TTE and BRT indicators estimates. Thanks also to Dr. Terry Done, and two anonymous reviewers for their suggestions and improvements. We are extremely grateful to the National Council for Scientific and Technological Development (CNPq) for the Brazilian Long-Term Ecological Research Program (PELD) and to the PELD-ILOC team (http://peldiloc.sites.ufsc.br/) for al the effort in monitoring reef communities at Brazilian Oceanic Islands within this Program.

Funding

This work was supported by Serrapilheira Institute (grant number Serra-1708–15364 awarded to GOL) and PELD/ILOC (CNPq 441241/2016-6 awarded to CEL. Ferreira). Our work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES)—Finance Code 001 (PhD scholarship to LC and postdoctoral scholarship to EAV). GOL is also grateful to a research productivity scholarship provided by CNPq (grant number 310517/2019-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Capitani.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13010 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capitani, L., de Araujo, J.N., Vieira, E.A. et al. Ocean Warming Will Reduce Standing Biomass in a Tropical Western Atlantic Reef Ecosystem. Ecosystems 25, 843–857 (2022). https://doi.org/10.1007/s10021-021-00691-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00691-z

Keywords

Navigation