Skip to main content

Topography and Tree Species Improve Estimates of Spatial Variation in Soil Greenhouse Gas Fluxes in a Subtropical Forest

Abstract

Subtropical and tropical forests account for over 50% of soil CO2 production, 47% of N2O fluxes of natural ecosystems, and act as both significant sources and sinks of atmospheric CH4. However, ecosystem-scale estimates of these fluxes typically do not account for uncertainty that arises from environmental heterogeneity over small spatial scales. To assess the effects of small-scale environmental heterogeneity on GHG fluxes in a tropical forest ecosystem, we measured fluxes of CO2, CH4, and N2O across a topographic gradient and at the base of different tree species. We then used Bayesian linear models together with maps of trees and topography to quantify spatial heterogeneity in ecosystem-scale estimates of GHG emissions. The relationship between GHG fluxes and species and topography varied for each gas type. CO2 varied strongly by species but was only weakly related to topographic variation. In contrast, CH4 and N2O, which are more strongly regulated by soil oxygen, had strong relationships with topography but did not vary across species. Assuming spatial homogeneity and average rainfall conditions, we estimated ecosystem soil CO2 emissions to be 28.91 kg CO2-C/ha/day, net CH4 consumption of − 5.15 g CH4-C/ha/day, and net N2O emissions of 1.78 g N2O-N/ha/day. Including variation caused by tree species decreased ecosystem-level estimates of CO2 emissions by 8.03%, whereas including topographic variation decreased net CH4 consumption by 12.98% and increased net N2O emissions by 1.05%. This translates to a net decrease of 8.32% in estimated CO2-equivalent emissions. Our findings show that ignoring small-scale environmental heterogeneity has implications for bottom-up estimates of GHG fluxes in tropical forests. Given the increasing availability of fine-scale topographic models, incorporating this source of variation in estimates of ecosystem soil GHG emissions could improve our understanding of the role tropical forests play in global GHG cycles.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Baddeley AJ, Rubak E, Turner R. 2015. Spatial Point Patterns: Methodology and Applications with R. London Chapman Hall: CRC Press.

    Book  Google Scholar 

  • Bond-Lamberty B, Thomson A. 2010. A global database of soil respiration data. Biogeosciences 7:1915–1926.

    CAS  Article  Google Scholar 

  • Bouskill NJ, Wood TE, Baran R, Hao Z, Ye Z, Bowen BP, Lim HC, Nico PS, Holman HY, Gilbert B, Silver WL, Northen TR, Brodie EL. 2016. Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition. Front Microbiol 7:1–14.

    Google Scholar 

  • Bouwman AF, Van Der Hoek KW, Olivier JGJ. 1995. Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100:2785–2800.

    CAS  Article  Google Scholar 

  • Breuer L, Papen H, Butterbach-Bahl K. 2000. N2O emission from tropical forest soils of Australia. Journal of Geophysical Research-Atmospheres 105:26353–26367.

    CAS  Article  Google Scholar 

  • Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R. 2004. Temporal variations of fluxes of NO, NO2, N2O, CO2, and CH4 in a tropical rain forest ecosystem. Global Biogeochemical Cycles 18.

  • Chadwick KD, Asner GP. 2016. Tropical soil nutrient distributions determined by biotic and hillslope processes. Biogeochemistry 127:273–289.

    CAS  Article  Google Scholar 

  • Cleveland CC, Townsend AR. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci 103:10316–21. https://doi.org/10.1073/pnas.0600989103

  • Cleveland CC, Wieder WR, Reed SC, Townsend AR. 2010. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91:2313–2323.

    Article  PubMed  Google Scholar 

  • Condit R. 1998. Tropical forest census plots: methods and results from Barro Colorado Island, Panama, and a comparison with other plots. Berlin, Germany: Springer-Verlag.

    Book  Google Scholar 

  • Condit R. 2000. Spatial Patterns in the Distribution of Tropical Tree Species. Science (80- ) 288:1414–8. https://doi.org/10.1126/science.288.5470.1414

  • Cook BD, Corp LA, Nelson RF, Middleton EM, Morton DC, McCorkel JT, Masek JG, Ranson KJ, Ly V, Montesano PM. 2013. NASA goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens 5:4045–4066.

    Article  Google Scholar 

  • Courtois EA, Stahl C, Van den Berge J, Bréchet L, Van Langenhove L, Richter A, Urbina I, Soong JL, Peñuelas J, Janssens IA. 2018. Spatial Variation of Soil CO2, CH4 and N2O Fluxes Across Topographical Positions in Tropical Forests of the Guiana Shield. Ecosystems 21:1445–1458.

    CAS  Article  Google Scholar 

  • Curry CL. 2007. Modeling the soil consumption at atmospheric methane at the global scale. Global Biogeochem Cycles 21:1–15.

    Article  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E. 2000. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50:667–680.

    Article  Google Scholar 

  • Daws MI, Mullins CE, Burslem DFRP, Paton SR, Dalling JW. 2002. Topogrpahic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238:79–89. https://doi.org/10.1023/A:1014289930621

  • Dwyer LM, Merriam G. 1981. Influence of Topographic Heterogeneity on Deciduous Litter Decomposition. Oikos 37:228–237.

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar T, a, Tyree MT, Turner BL, Hubbell SP. . 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82.

    CAS  Article  PubMed  Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V. 2006. Spatial variation of soil respiration across a topographic gradient in a tropical rain forest in French Guiana. J Trop Ecol 22:565–574.

    Article  Google Scholar 

  • Erickson HE, Ayala G. 2004. Hurricane-induced nitrous oxide fluxes from a wet tropical forest. Glob Chang Biol 10:1155–1162.

    Article  Google Scholar 

  • Groffman PM, Butterbach-Bahl K, Fulweiler RW, Gold AJ, Morse JL, Stander EK, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93:49–77. https://doi.org/10.1007/s10533-008-9277-5

  • Hall SJ, McDowell WH, Silver WL. 2013. When Wet Gets Wetter: Decoupling of Moisture, Redox Biogeochemistry, and Greenhouse Gas Fluxes in a Humid Tropical Forest Soil. Ecosystems 16:576–589.

    CAS  Article  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Coûteaux MM, Roy J, Bonal D. 2008. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175.

    Article  PubMed  Google Scholar 

  • Heartsill-Scalley T, Scatena FN, Estrada C, McDowell WH, Lugo AE. 2007. Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. J Hydrol 333:472–485.

    Article  Google Scholar 

  • Holwerda F, Scatena FN, Bruijnzeel LA. 2006. Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. J Hydrol 327:592–602.

    Article  Google Scholar 

  • Hurst MD, Mudd SM, Walcott R, Attal M, Yoo K. 2012. Using hilltop curvature to derive the spatial distribution of erosion rates. J Geophys Res Earth Surf 117. https://doi.org/10.1029/2011JF002057

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB. 2007. Soil nutrients influence spatial distributions of tropical tree species. PNAS 104:864–9. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1783405&tool=pmcentrez&rendertype=abstract

  • Johnston MH. 1992. Soil-Vegetation Relationships in a Tabonuco Forest Community in the Luquillo Mountains of Puerto-Rico. J Trop Ecol 8:253–263.

    Article  Google Scholar 

  • Kaiser KE, McGlynn BL, Dore JE. 2018. Landscape analysis of soil methane flux across complex terrain. Biogeosciences 15:3143–3167.

    CAS  Article  Google Scholar 

  • Keller AB, Reed SC, Townsend AR, Cleveland CC. 2013. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest. Soil Biol Biochem 58:61–69. https://doi.org/10.1016/j.soilbio.2012.10.041.

    CAS  Article  Google Scholar 

  • Kiese R, Hewett B, Graham A, Butterbach-Bahl K. 2003. Seasonal variability of N2O emissions and CH4 uptake by tropical rainforest soils of Queensland, Australia. Global Biogeochem Cycles 17:1–13.

    Article  Google Scholar 

  • Liptzin D, Silver WL, Detto M. 2011. Temporal Dynamics in Soil Oxygen and Greenhouse Gases in Two Humid Tropical Forests. Ecosystems 14:171–182.

    CAS  Article  Google Scholar 

  • Martin JG, Bolstad PV. 2009. Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape. Soil Biol Biochem 41:530–543. https://doi.org/10.1016/j.soilbio.2008.12.012.

    CAS  Article  Google Scholar 

  • McSwiney CP, McDowell WH, Keller M. 2001. Distribution of nitrous oxide and regulators of its production across a tropical rainforest catena in the Luquillo Experimental Forest, Puerto Rico. Biogeochemistry 56:265–286.

    CAS  Article  Google Scholar 

  • Min E, Wilcots ME, Naeem S, Gough L, McLaren JR, Rowe RJ, Rastetter EB, Boelman NT, Griffin KL. 2021. Herbivore absence can shift dry heath tundra from carbon source to sink during peak growing season. Environmental Research Letters 16.

  • Muscarella R, Emilio T, Phillips OL, Lewis SL, Slik F, Baker WJ, Couvreur TLP, Eiserhardt WL, Svenning JC, Affum-Baffoe K, Aiba SI, de Almeida EC, de Almeida SS, de Oliveira EA, Álvarez-Dávila E, Alves LF, Alvez-Valles CM, Carvalho FA, Guarin FA, Andrade A, Aragão LEOC, Murakami AA, Arroyo L, Ashton PS, Corredor GAA, Baker TR, de Camargo PB, Barlow J, Bastin JF, Bengone NN, Berenguer E, Berry N, Blanc L, Böhning-Gaese K, Bonal D, Bongers F, Bradford M, Brambach F, Brearley FQ, Brewer SW, Camargo JLC, Campbell DG, Castilho CV, Castro W, Catchpole D, Cerón Martínez CE, Chen S, Chhang P, Cho P, Chutipong W, Clark C, Collins M, Comiskey JA, Medina MNC, Costa FRC, Culmsee H, David-Higuita H, Davidar P, del Aguila-Pasquel J, Derroire G, Di Fiore A, Van Do T, Doucet JL, Dourdain A, Drake DR, Ensslin A, Erwin T, Ewango CEN, Ewers RM, Fauset S, Feldpausch TR, Ferreira J, Ferreira LV, Fischer M, Franklin J, Fredriksson GM, Gillespie TW, Gilpin M, Gonmadje C, Gunatilleke AUN, Hakeem KR, Hall JS, Hamer KC, Harris DJ, Harrison RD, Hector A, Hemp A, Herault B, Pizango CGH, Coronado ENH, Hubau W, Hussain MS, Ibrahim FH, Imai N, Joly CA, Joseph S, Anitha K, Kartawinata K, et al. 2020. The global abundance of tree palms. Glob Ecol Biogeogr 29:1495–1514.

    Article  Google Scholar 

  • Muscarella R, Uriarte M, Erickson DL, Swenson NG, Kress WJ, Zimmerman JK. 2016. Variation of Tropical Forest Assembly Processes Across Regional Environmental Gradients. Perspect Plant Ecol Evol Syst 23:52–62. http://linkinghub.elsevier.com/retrieve/pii/S1433831916300993

  • O’Connell CS, Ruan L, Silver WL. 2018. Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9:1348. https://doi.org/10.1038/s41467-018-03352-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Osborne BB, Nasto MK, Asner GP, Christopher S, Cleveland CC, Sullivan BW, Taylor PG, Townsend AR, Porder S. 2017. Climate, Topography, and Canopy Chemistry Exert Hierarchical Control Over Soil N Cycling in a Neotropical Lowland Forest. Ecosystems. https://doi.org/10.1007/s10021-016-0095-7

  • Palta MM, Ehrenfeld JG, Groffman PM. 2014. “Hotspots” and “Hot Moments” of Denitrification in Urban Brownfield Wetlands. Ecosystems 17:1121–37. https://doi.org/10.1007/s10021-014-9778-0

  • Parkin TB, Venterea RT, Hargreaves SK. 2012. Calculating the Detection Limits of Chamber-based Soil Greenhouse Gas Flux Measurements. J Environ Qual 41:705. https://www.agronomy.org/publications/jeq/abstracts/41/3/705

  • Plummer M. 2011. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.

  • Powers JS, Kalicin MH, Newman ME. 2004. Tree species do not influence local soil chemistry in a species-rich Costa Rica rain forest. J Trop Ecol 20:587–590.

    Article  Google Scholar 

  • R CT. 2018. R: A language and environment for statistical computing. https://www.r-project.org/.

  • Reed SC, Cleveland CC, Townsend AR. 2008. Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–2934.

    Article  PubMed  Google Scholar 

  • Sandel B, Svenning JC. 2013. Human impacts drive a global topographic signature in tree cover. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3474.

    CAS  Article  Google Scholar 

  • Schimel JP. 2018. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu Rev Ecol Evol Syst 49:409–32. https://doi.org/10.1146/annurev-ecolsys-110617-062614

  • Schlesinger WH. 2013. An estimate of the global sink for nitrous oxide in soils. Global Change Biology 19:2929–2931.

    Article  PubMed  Google Scholar 

  • Silver WL, Lugo AE, Keller M. 1999. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328.

    Google Scholar 

  • Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D. 2007. Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-ts.pdf

  • Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A. 2014. The deviance information criterion: 12 years on. J R Stat Soc Ser B Stat Methodol 76:485–493.

    Article  Google Scholar 

  • Tang C, Uriarte M, Morton D, Zheng T. 2021. Large-scale, image-based tree inventories in a tropical forest using artificial perceptual learning Methods in Ecology and Evolution 12: 608–618.

  • Tateno R, Takeda H. 2003. Forest structure and tree species distribution in relation to topography-mediated heterogeneity of soil nitrogen and light at the forest floor. Ecol Res 18:559–571.

    Article  Google Scholar 

  • Thompson J, Brokaw N, Zimmerman JK, Waide RB, Everham EM, Lodge DJ, Taylor CM, García-Montiel D, Fluet M. 2002. Land Use History, Environment, and Tree Composition in a Tropical Forest. Ecol Appl 12:1344–1363.

    Article  Google Scholar 

  • Uriarte M, Turner BL, Thompson J, Zimmerman JK. 2015. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecol Appl 25:2022–34. https://doi.org/10.1890/15-0112.1

  • Uriarte M, Muscarella R, Zimmerman JK. 2018. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob Chang Biol 24:e692–e704.

    Article  PubMed  Google Scholar 

  • Vargas R. 2012. How a hurricane disturbance influences extreme CO2 fluxes and variance in a tropical forest. Environ Res Lett 7.

  • Verchot LV, Davidson EA, Cattânio JH, Ackerman IL. 2000. Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazonia. Ecosystems 3:41–56.

    CAS  Article  Google Scholar 

  • Vidon P, Marchese S, Welsh M, McMillan S. 2015. Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones. Environ Monit Assess 187.

  • Waring BG, Álvarez-Cansino L, Barry KEK, Becklund KK, Dale S, Gei MG, Keller AB, Lopez OR, Markesteijn L, Mangan S, Riggs CE, Rodriguez-Ronderos ME, Segnitz RM, Schnitzer SA, Powers JS. 2015. Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects. Proc R Soc B 282:20151001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolf J, Brocard G, Willenbring J, Porder S, Uriarte M. 2016. Abrupt Change in Forest Height along a Tropical Elevation Gradient Detected Using Airborne Lidar. Remote Sens 8:864. http://www.mdpi.com/2072-4292/8/10/864

  • Wolf K, Flessa H, Veldkamp E. 2012. Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers. Biogeochemistry 111:469–483.

    CAS  Article  Google Scholar 

  • Wood TE, Detto M, Silver WL. 2013. Sensitivity of Soil Respiration to Variability in Soil Moisture and Temperature in a Humid Tropical Forest. 8:e80965.

  • Wood TE, Silver WL. 2012. Strong spatial variability in trace gasdynamics following experimental drought in a humid tropical forest. Global Biogeochem Cycles 26:1–12.

    Article  Google Scholar 

  • Zinke PJ. 1962. The Pattern of Influence of Individual Forest Trees on Soil Properties. Ecology 43:130–133.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the field crews who collected tree census data. Research was supported by NSF awards DEB-1831952 and 1546686 to the Luquillo LTER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Uriarte.

Additional information

Author contributions AQ, DM, and MU conceived the study. AQ performed the research, and AQ and MU analyzed data. JZ and MU collected tree data. AQ wrote the first draft, and all authors contributed to the final version.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 437 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quebbeman, A.W., Menge, D.N.L., Zimmerman, J. et al. Topography and Tree Species Improve Estimates of Spatial Variation in Soil Greenhouse Gas Fluxes in a Subtropical Forest. Ecosystems 25, 648–660 (2022). https://doi.org/10.1007/s10021-021-00677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00677-x

Keywords

  • Tropical forests
  • Methane
  • Nitrous oxide
  • Carbon dioxide
  • Soil GHG fluxes
  • Puerto Rico
  • Spatial variation