Skip to main content

Assessing the Risk of Losing Forest Ecosystem Services Due to Wildfires

Abstract

Disturbances such as wildfires are an integral part of forest ecosystems, but climate change is increasing their extent, frequency, intensity and severity, compromising forest ecosystem services (ES) that are fundamental to human well-being. Thus, evaluating the risk of losing ecosystem services due to wildfires is essential for anticipating and adapting to future conditions. Here, we analyze the spatial patterns of the risk of losing key forest ES and biodiversity (that is, carbon sink, bird richness, hydrological control and erosion control) due to wildfires in Catalonia (NE Spain), taking into account exposed values, hazard magnitude, susceptibility and lack of adaptive capacity. We also determine the effect of climate and different forest functional types on the risk of losing ES under average and extreme hazard conditions (defined as median and 90th percentile values of the Fire Weather Index, respectively), as well as on the increase in risk. Our results show that hazard magnitude is the most important component defining risk under average conditions. Under extreme conditions, exposed values (carbon sink capacity and erosion control) emerged as the most important components of risk. Climate was the main driver of ES at risk under average conditions, but the high vulnerability of non-Mediterranean conifer forests with a low adaptive capacity gained importance under extreme conditions. The increase in risk between average and extreme conditions was driven by precipitation, as the highest increases in risk were found in relatively wet forests with low average risk at present. These results have direct implications on the future risk of losing ES to wildfires in Mediterranean forests but also in other regions, and they could contribute to future policies by anticipating conditions associated with particularly high risk that can be used to guide efficient forest management.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data available

Data are available at: https://doi.org/10.6084/m9.figshare.13636748.v1.

References

  • Abatzoglou JT, Williams AP, Boschetti L, Zubkova M, Kolden CA. 2018. Global patterns of interannual climate–fire relationships. Glob Chang Biol 24:5164–75.

    Article  Google Scholar 

  • Alvarez A, Gracia M, Vayreda J, Retana J. 2012. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For Ecol Manage 270:282–90. http://linkinghub.elsevier.com/retrieve/pii/S0378112711000715. Last accessed 20/02/2012

  • Amatulli G, Camia A, San-Miguel-Ayanz J. 2013. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450–451:209–22. https://doi.org/10.1016/j.scitotenv.2013.02.014.

    CAS  Article  PubMed  Google Scholar 

  • Bowman DMJS, Williamson GJ, Abatzoglou JT, Kolden CA, Cochrane MA, Smith AMS. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nat Ecol Evol 1:0058. https://doi.org/10.1038/s41559-016-0058.

    Article  Google Scholar 

  • Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M. 2020. Vegetation fires in the Anthropocene. Nat Rev Earth Environ. https://doi.org/10.1038/s43017-020-0085-3.

    Article  Google Scholar 

  • Brotons L, Aquilué N, de Cáceres M, Fortin M-J, Fall A. 2013. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. Bohrer G, editor. PLoS One 8:e62392. https://doi.org/10.1371/journal.pone.0062392.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Buotte PC, Levis S, Law BE, Hudiburg TW, Rupp DE, Kent JJ. 2019. Near-future forest vulnerability to drought and fire varies across the western United States. Glob Chang Biol 25:290–303. https://doi.org/10.1111/gcb.14490.

    Article  PubMed  Google Scholar 

  • Canadell JG, Raupach MR. 2008. Managing Forests for Climate Change Mitigation. Science (80- ) 320:1456–7.

    CAS  Article  Google Scholar 

  • Christopoulou A, Fyllas NM, Andriopoulos P, Koutsias N, Dimitrakopoulos PG, Arianoutsou M. 2014. Post-fire regeneration patterns of Pinus nigra in a recently burned area in Mount Taygetos, Southern Greece: The role of unburned forest patches. For Ecol Manage 327:148–56. https://doi.org/10.1016/j.foreco.2014.05.006.

    Article  Google Scholar 

  • Coogan SCP, Robinne FN, Jain P, Flannigan MD. 2019. Scientists’ warning on wildfire — a canadian perspective. Can J For Res 49:1015–23.

    Article  Google Scholar 

  • Crockett JL, Westerling AL. 2018. Greater temperature and precipitation extremes intensify Western U.S. droughts, wildfire severity, and sierra Nevada tree mortality. J Clim 31:341–54.

    Article  Google Scholar 

  • De Cáceres M, Brotons L, Aquilué N, Fortin M-JJ. 2013. The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. Pearman P, editor. J Biogeogr 40:1535–47. https://doi.org/10.1111/jbi.12111.

    Article  Google Scholar 

  • De Cáceres M, Martínez-Vilalta J, Coll L, Llorens P, Casals P, Poyatos R, Pausas JG, Brotons L. 2015. Coupling a water balance model with forest inventory data to predict drought stress: The role of forest structural changes vs. climate changes. Agric For Meteorol 213:77–90. https://doi.org/10.1016/j.agrformet.2015.06.012.

    Article  Google Scholar 

  • Díaz-Delgado R, Lloret F, Pons X. 2004. Statistical analysis of fire frequency models for Catalonia (NE Spain, 1975–1998) based on fire scar maps from Landsat MSS data. Int J Wildl Fire 13:89–99.

    Article  Google Scholar 

  • Ding Y, Zang R, Letcher S, Liu S, He F. 2012. Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos 121:1263–1270.

    Article  Google Scholar 

  • Duguy B, Alloza JA, Baeza MJ, De la Riva J, Echeverría M, Ibarra P, Llovet J, Cabello FP, Rovira P, Vallejo RV. 2012. Modelling the Ecological Vulnerability to Forest Fires in Mediterranean Ecosystems Using Geographic Information Technologies. Environ Manage 50:1012–26. https://doi.org/10.1007/s00267-012-9933-3.

    Article  PubMed  Google Scholar 

  • Duguy B, Paula S, Pausas JG, Alloza JA, Gimeno T, Vallejo R V. 2013. Effects of Climate and Extreme Events on Wildfire Regime and Their Ecological Impacts. In: Navarra A, Tubiana L, editors. Regional Assessment of Climate Change in the Mediterranean: Volume 2: Agriculture, Forests and Ecosystem Services and People. Vol. 52. Advances in Global Change Research. Dordrecht: Springer Netherlands. pp 23–37. https://doi.org/10.1007/978-94-007-5769-1

  • Enright NJ, Fontaine JB, Bowman DMJS, Bradstock RA, Williams RJ. 2015. Interval squeeze: Altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13:265–72.

    Article  Google Scholar 

  • Estrada J, Pedrocchi V, Brotons L, Herrando S. 2004. Atles dels ocells nidificants de Catalunya 1999–2002. Barcelona: Lynx Edicions.

    Google Scholar 

  • Flannigan MD, Amiro BD, Logan KA, Stocks BJ, Wotton BM. 2005. Forest fires and climate change in the 21st century. Mitig Adapt Strateg Glob Chang 11:847–59.

    Article  Google Scholar 

  • Fremout T, Thomas E, Gaisberger H, Van Meerbeek K, Muenchow J, Briers S, Gutierrez‐Miranda CE, Marcelo‐Peña JL, Kindt R, Atkinson R, Espinosa CI, Aguirre‐Mendoza Z, Muys B. 2020. Mapping tree species vulnerability to multiple threats as a guide to restoration and conservation of tropical dry forests. Glob Chang Biol:1–17.

  • Gan X, Fernandez IC, Guo J, Wilson M, Zhao Y, Zhou B, Wu J. 2017. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol Indic 81:491–502. https://doi.org/10.1016/j.ecolind.2017.05.068.

    Article  Google Scholar 

  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J. 2019. Forest Fire Susceptibility and Risk Mapping Using Social / Infrastructural Vulnerability and Environmental Variables. Fire.

  • Gracia C, Burriel JA, Ibàñez JJ, Mata T, Vayreda J. 2004. Inventari Ecològic i Forestal de Catalunya. Bellaterra

  • Gramacy RB. 2016. ‘tgp’ R package: Bayesian Treed Gaussian Process Models.

  • Harper AR, Doerr SH, Santin C, Froyd CA, Sinnadurai P. 2018. Prescribed fire and its impacts on ecosystem services in the UK. Sci Total Environ 624:691–703. http://linkinghub.elsevier.com/retrieve/pii/S0048969717335878

  • Holden ZA, Swanson A, Luce CH, Jolly WM, Maneta M, Oyler JW, Warren DA, Parsons R, Affleck D. 2018. Decreasing fire season precipitation increased recent western US forest wildfire activity. Proc Natl Acad Sci U S A 115:E8349–57.

    CAS  Article  Google Scholar 

  • IPCC. 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change,. (Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, editors.).

  • Joint Research Centre. Fire Weather Index - ERA-Interim (Version 2.0). Zenodo. 2017.

  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Team TRC, Benesty M, Lescarbeau R, Ziem A, Scrucca L. 2015. Caret: Classification and Regression Training.

  • Keeley JE, Fotheringham CJ. 2000. Role of fire in regeneration from seed. In: Seeds: the ecology of regeneration in plant communities. Wallingford: CABI. pp 311–30. http://www.cabi.org/cabebooks/ebook/20003037675

  • Keyser AR, Krofcheck DJ, Remy CC, Allen CD, Hurteau MD. 2020. Simulated Increases in Fire Activity Reinforce Shrub Conversion in a Southwestern US Forest. Ecosystems. https://doi.org/10.1007/s10021-020-00498-4.

    Article  Google Scholar 

  • Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Retana J. 2018. The positive carbon stocks–biodiversity relationship in forests: co-occurrence and drivers across five subclimates. Ecol Appl 28:1481–93. https://doi.org/10.1002/eap.1749.

    Article  PubMed  Google Scholar 

  • Lecina-Diaz J, Alvarez A, Retana J. 2014. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of mediterranean pine forests. PLoS One. https://doi.org/10.1371/journal.pone.0085127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lecina-Diaz J, Martínez-Vilalta M, Alvarez A, Banqué M, Birkmann J, Feldmeyer D, Vayreda J, Retana J. 2020. Characterizing forest vulnerability and risk to climate change hazards. Front Ecol Environ. https://doi.org/10.1002/fee.2278

    Article  Google Scholar 

  • Leverkus AB, Rey Benayas JM, Castro J, Boucher D, Brewer S, Collins BM, Donato D, Fraver S, Kishchuk BE, Lee E-J, Lindenmayer DB, Lingua E, Macdonald E, Marzano R, Rhoades CC, Royo A, Thorn S, Wagenbrenner JW, Waldron K, Wohlgemuth T, Gustafsson L. 2018. Salvage logging effects on regulating and supporting ecosystem services - a systematic map. Can J For Res 48:983–1000. https://doi.org/10.1139/cjfr-2018-0114.

    Article  Google Scholar 

  • Littell JS, Mckenzie D, Peterson DL, Westerling AL. 2009. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl 19:1003–21. https://doi.org/10.1890/07-1183.1.

    Article  PubMed  Google Scholar 

  • Liu Y, Goodrick SL, Stanturf JA. 2013. Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario. For Ecol Manage 294:120–35. https://doi.org/10.1016/j.foreco.2012.06.049.

    Article  Google Scholar 

  • Lozano OM, Salis M, Ager AA, Arca B, Alcasena FJ, Monteiro AT, Finney MA, Del Giudice L, Scoccimarro E, Spano D. 2016. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas. Risk Anal 37:1898–916. https://doi.org/10.1111/risa.12739.

    Article  PubMed  Google Scholar 

  • Maringer J, Wohlgemuth T, Neff C, Pezzatti GB, Conedera M. 2012. Post-fire spread of alien plant species in a mixed broad-leaved forest of the Insubric region. Flora - Morphol Distrib Funct Ecol Plants 207:19–29. https://doi.org/10.1016/j.flora.2011.07.016.

    Article  Google Scholar 

  • MCSC. 2005. Mapa de Cobertes del Sòl de Catalunya (CREAF, Barcelona). Available at http://www.creaf.uab.es/mcsc.

  • Ministerio de Medio Ambiente. 2007. Tercer Inventario Forestal Nacional. Madrid, Spain: Direccion General de Conservacion de la Naturaleza.

    Google Scholar 

  • Mitsopoulos ID, Dimitrakopoulos AP. 2007. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine (Pinus halepensis Mill.) forests. Ann For Sci 64:287–99. https://doi.org/10.1051/forest:2007006.

    Article  Google Scholar 

  • Miura S, Amacher M, Hofer T, San-Miguel-Ayanz J, Ernawati Thackway R. 2015. Protective functions and ecosystem services of global forests in the past quarter-century. For Ecol Manage 352:35–46. https://doi.org/10.1016/j.foreco.2015.03.039.

    Article  Google Scholar 

  • Montero G, Ruiz-Peinado R, Muñoz M. 2005. Producción de biomasa y fijación de CO2 por los bosques españoles. Madrid: INIA-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria.

    Google Scholar 

  • Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, McCaffrey S, Odion DC, Schoennagel T, Syphard AD. 2014. Learning to coexist with wildfire. Nature 515:58–66.

    CAS  Article  Google Scholar 

  • Moritz MA, Parisien M-A, Batllori E, Krawchuk MA, Van Dorn J, Ganz DJ, Katharine H, Hayhoe K. 2012. Climate change and disruptions to global fire activity. Ecosp 3(6):1–22.

    Google Scholar 

  • Ninyerola M, Pons X, Roure JM. 2000. A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–41.

    Article  Google Scholar 

  • Oliveira S, Félix F, Nunes A, Lourenço L, Laneve G, Sebastián-López A. 2018. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. J Environ Manage 206:158–69.

    Article  Google Scholar 

  • Palheiro PM, Fernandes P, Cruz MG. 2006. A fire behaviour-based fire danger classification for maritime pine stands: Comparison of two approaches. For Ecol Manage 234:S54.

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB. 2013. The Structure, Distribution, and Biomass of the World’s Forests. Annu Rev Ecol Evol Syst 44:593–622. https://doi.org/10.1146/annurev-ecolsys-110512-135914

  • Parks SA, Miller C, Abatzoglou JT, Holsinger LM, Parisien MA, Dobrowski SZ. 2016. How will climate change affect wildland fire severity in the western US? Environ Res Lett 11.

  • Pausas JG, Keeley JE. 2019. Wildfires as an ecosystem service. Front Ecol Environ:1–7.

  • Pausas JG, Llovet J, Rodrigo A, Vallejo R. 2008. Are wildfires a disaster in the Mediterranean basin? – A review. Int J Wildl Fire 17:713–23.

    Article  Google Scholar 

  • Pérez-Cabello F, Ibarra P, Echeverría MT, de la Riva J. 2010. Post-fire land degradation of Pinus sylvestris L. woodlands after 14 years. L Degrad Dev 21:145–60.

    Article  Google Scholar 

  • Pérez-Sánchez J, Senent-Aparicio J, Díaz-Palmero JM, de Cabezas-Cerezo J, D. 2017. A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain). Sci Total Environ 590–591:761–74. https://doi.org/10.1016/j.scitotenv.2017.03.040.

    CAS  Article  PubMed  Google Scholar 

  • Regos A, Clavero M, D’Amen M, Guisan A, Brotons L. 2017. Wildfire-vegetation dynamics affect predictions of climate change impact on bird communities. Ecography (Cop):1–13. https://doi.org/10.1111/ecog.02990

  • Retana J, Espelta J, Habrouk A, Ordóñez J, Solà-Morales F. 2002. Regeneration patterns of three Mediterranean pines and forest changes after a large wildfire in northeastern Spain. Ecoscience 9:89–97.

    Article  Google Scholar 

  • Reyes O, García-Duro J, Salgado J. 2015. Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Ann For Sci 72:267–75. https://doi.org/10.1007/s13595-014-0427-8

  • Rodrigo A, Retana J, Picó FX. 2004. Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–29. https://doi.org/10.1890/02-0492

  • Román MV, Azqueta D, Rodrígues M. 2013. Methodological approach to assess the socio-economic vulnerability to wildfires in Spain. For Ecol Manage 294:158–65.

    Article  Google Scholar 

  • Ruffault J, Curt T, Martin-Stpaul NK, Moron V, Trigo RM. 2018. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat Hazards Earth Syst Sci 18:847–56.

    Article  Google Scholar 

  • Saracco JF, Fettig SM, San Miguel GL, Mehlman DW, Thompson BE, Albert SK. 2018. Avian demographic responses to drought and fire: a community-level perspective. Ecol Appl 28:1773–81. https://doi.org/10.1002/eap.1751

  • Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–10. https://doi.org/10.1038/nclimate2318

  • Seidl R, Schelhaas MJ, Lexer MJ. 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17:2842–52.

    Article  Google Scholar 

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO. 2017. Forest disturbances under climate change. Nat Clim Chang 7:395–402.

    Article  Google Scholar 

  • Shakesby RA. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Rev 105:71–100. https://doi.org/10.1016/j.earscirev.2011.01.001.

    Article  Google Scholar 

  • Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, Donato DC, Morgan P, Veblen TT. 2018. Evidence for declining forest resilience to wildfires under climate change. Ecol Lett 21:243–52.

    Article  Google Scholar 

  • Tapias R, Climent J, Pardos JA, Gil L. 2004. Life Histories of Mediterranean Pines. Plant Ecol 171:53–68.

    Article  Google Scholar 

  • Thom D, Seidl R. 2016. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–81. https://doi.org/10.1111/brv.12193.

    Article  PubMed  Google Scholar 

  • Thorne JH, Choe H, Stine PA, Chambers JC, Holguin A, Kerr AC, Schwartz MW. 2018. Climate change vulnerability assessment of forests in the Southwest USA. Clim Change 148:387–402. https://doi.org/10.1007/s10584-017-2010-4.

    Article  Google Scholar 

  • Turner M. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833–49.

    Article  Google Scholar 

  • Van Lierop P, Lindquist E, Sathyapala S, Franceschini G. 2015. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For Ecol Manage 352:78–88. https://doi.org/10.1016/j.foreco.2015.06.010.

    Article  Google Scholar 

  • Vautard R, Gobiet A, Sobolowski S, Kjellström E, Stegehuis A, Watkiss P, Mendlik T, Landgren O, Nikulin G, Teichmann C, Jacob D. 2014. The European climate under a 2 °c global warming. Environ Res Lett 9.

  • Vayreda J, Gracia M, Canadell JG, Retana J. 2012a. Spatial Patterns and Predictors of Forest Carbon Stocks in Western Mediterranean. Ecosystems 15:1258–70.

    CAS  Article  Google Scholar 

  • Vayreda J, Martinez-Vilalta J, Gracia M, Retana J. 2012b. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob Chang Biol 18:1028–41.

    Article  Google Scholar 

  • Vieira DCS, Malvar MC, Fernández C, Serpa D, Keizer JJ. 2016. Annual runoff and erosion in a recently burn Mediterranean forest – The effects of plowing and time-since-fire. Geomorphology 270:172–83. https://doi.org/10.1016/j.geomorph.2016.06.042.

    Article  Google Scholar 

  • Vilà-Cabrera A, Rodrigo A, Martínez-Vilalta J, Retana J. 2012. Lack of regeneration and climatic vulnerability to fire of Scots pine may induce vegetation shifts at the southern edge of its distribution. J Biogeogr 39:488–96.

    Article  Google Scholar 

  • Vukomanovic J, Steelman T. 2019. A Systematic Review of Relationships Between Mountain Wildfire and Ecosystem Services. Landsc Ecol 34:1179–94. https://doi.org/10.1007/s10980-019-00832-9.

    Article  Google Scholar 

  • Van Wagner C. 1987. Development and structure of the Canadian forest fire weather index system. Technical Report 35. Canadian Forestry Service. Ottawa, Ontario

  • Young DJN, Werner CM, Welch KR, Young TP, Safford HD, Latimer AM. 2019. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. Ecology 100:e02571. https://doi.org/10.1002/ecy.2571.

    Article  PubMed  Google Scholar 

  • Zlonis EJ, Walton NG, Sturtevant BR, Wolter PT, Niemi GJ. 2019. Burn severity and heterogeneity mediate avian response to wildfire in a hemiboreal forest. For Ecol Manage 439:70–80. https://doi.org/10.1016/j.foreco.2019.02.043.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Miquel de Cáceres for sharing data of the model De Cáceres and others (2015). We thank the Generalitat de Catalunya fire-fighters corps and Francesc Xavier Castro (Forest Fires Prevention Services, Generalitat de Catalunya) for sharing data, and the Joint Research Centre for providing historical FWI data. We are grateful to the Spanish National Forest Inventory and the Catalan Ornithological Institute for providing data, as well as to the thousands of participants that collected these data. Two anonymous reviewers provided valuable feedback on the manuscript. This study was funded by the Spanish Ministry of Economy and Competitiveness Project ‘FORESTCAST’ (CGL2014-59742- C2-1-R) and ‘INMODES’ (CGL2017-89999-C2-1-R). JLD received a pre-doctoral fellowship funded by Spanish Ministry of Economy and Competitiveness (BES-2015-073854) and is currently supported by national funds through the FCT – Foundation for Science and Technology, I.P., under the FirESmart Project (PCIF/MOG/0083/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judit Lecina-Diaz.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2841 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lecina-Diaz, J., Martínez-Vilalta, J., Alvarez, A. et al. Assessing the Risk of Losing Forest Ecosystem Services Due to Wildfires. Ecosystems 24, 1687–1701 (2021). https://doi.org/10.1007/s10021-021-00611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00611-1

Keywords

  • Adaptive capacity
  • Bird richness
  • Carbon sink
  • Climate
  • Disturbances
  • Erosion control
  • Forest functional type
  • Hydrological control
  • Susceptibility
  • Vulnerability