Skip to main content

Mangrove Encroachment Alters Decomposition Rate in Saltmarsh Through Changes in Litter Quality

Abstract

Global climate change is driving the expansion of mangroves into saltmarsh habitat, which may alter the rate and magnitude of organic matter decomposition and nutrient cycling due to differences in the structural complexity, litter quality, and other ecophysiological traits of foundation species. This work quantified and compared aboveground litter decomposition of the range-expanding mangrove, Avicennia germinans, and resident saltmarsh cordgrass, Spartina alterniflora, and decomposition of a standard substrate belowground, in the saltmarsh and saltmarsh-mangrove ecotone habitat along the Atlantic coast of Florida, USA. Plant and soil fractions were tested for natural abundances of δ13C and δ15N stable isotopes to elucidate soil nutrient sources. Although aboveground decomposition rates differed between marsh and mangrove species due to differences in litter quality, decomposition rates did not vary between saltmarsh and ecotonal habitats. Decay rates were higher for A. germinans leaf litter (0.007 ± 0.0003 k day−1) than for S. alterniflora (0.004 ± 0.0003 k day−1) regardless of habitat, which suggests that increasing inputs of A. germinans litter with encroachment may increase nutrient availability through rapid turnover. Furthermore, belowground decomposition was similar between habitats (0.015 ± 0.0008 k day−1), whereas soil δ13C and δ15N stable isotopes differed significantly. Collectively, these results suggest that mangrove encroachment may not modify the environmental factors driving decomposition, but alterations in foundation plant species may ultimately alter nutrient cycling within habitats through shifts in litter quality.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  • Ainley LB, Bishop MJ. 2015. Relationships between estuarine modification and leaf litter decomposition vary with latitude. Estuar Coast Shelf Sci 164:244–52.

    CAS  Google Scholar 

  • Alongi DM. 2014. Carbon cycling and storage in Mangrove forests. Ann Rev Mar Sci 6:195–219.

    PubMed  Google Scholar 

  • Archer SR, Anderson EM, Predick KI, Schwimming S, Steidl RJ, Woods SR. 2017. Rangeland Systems: processes, management and challenges. (Burdick DM, editor.). New York: Springer

  • Armitage AR, Highfield WE, Brody SD, Louchouarn P. 2015. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10:1–17. https://doi.org/10.1371/journal.pone.0125404.

    CAS  Article  Google Scholar 

  • Bannon RO, Roman CT. 2008. Using stable isotopes to monitor anthropogenic nitrogen inputs to estuaries. Ecol Appl 18:22–30.

    PubMed  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR. 2011. The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–93.

    Google Scholar 

  • Barreto CR, Morrissey EM, Wykoff DD, Chapman SK. 2018. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 38:497–508.

    Google Scholar 

  • Bates D, Mächler M, Bolker BM, Walker SC. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–43.

    Google Scholar 

  • Berg B, McClaugherty C. 2003. Plant litter decomposition, humus formation, carbon sequestration. Berlin: Springer.

    Google Scholar 

  • Bertin C, Yang X, Weston LA. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.

    CAS  Google Scholar 

  • Boutton TW, Liao JD, Filley TR, Archer SR. 2009. Belowground carbon storage and dynamics accompanying woody plant encroachment in a subtropical savanna. In: Soil carbon sequestration and the greenhouse effect, vol 57, pp 181–205.

  • Castro P, Valiela I, Freitas H. 2007. Eutrophication in Portuguese estuaries evidenced by δ15N of macrophytes. Mar Ecol Prog Ser 351:43–51.

    CAS  Google Scholar 

  • Cavanaugh KC, Dangremond EM, Doughty CL, Park Williams A, Parker JD, Hayes MA, Rodriguez W, Feller IC. 2019. Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proc Natl Acad Sci USA 116:21602–8.

    CAS  PubMed  Google Scholar 

  • Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc Natl Acad Sci USA 111:723–7.

    CAS  PubMed  Google Scholar 

  • Chen J, Franklin JF, Spies TA. 1993. Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agric For Meteorol 63:219–37.

    Google Scholar 

  • Choi Y, Hsieh Y, Wang Y. 2001. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: evidence from carbon isotopes. Global Biogeochem Cycles 15:311–19.

    CAS  Google Scholar 

  • Comeaux RS, Allison MA, Bianchi TS. 2012. Mangrove expansion in the Gulf of Mexico with climate change: implications for wetland health and resistance to rising sea levels. Estuar Coast Shelf Sci 96:81–95. https://doi.org/10.1016/j.ecss.2011.10.003.

    CAS  Article  Google Scholar 

  • Crain C. 2007. Shifting nutrient limitation and Eutrophication effects in marsh vegetation across estuarine salinity gradients. Estuar Coasts 30:26–34.

    CAS  Google Scholar 

  • Currin CA, Newell SY, Paerl HW. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs: considerations based on multiple stable isotope analysis. Mar Ecol Prog Ser 121:99–116.

    Google Scholar 

  • D’Odorico P, He Y, Collins S, De Wekker SFJ, Engel V, Fuentes JD. 2013. Vegetation-microclimate feedbacks in woodland-grassland ecotones. Glob Ecol Biogeogr 22:364–79.

    Google Scholar 

  • Dangremond EM, Simpson LT, Osborne TZ, Feller IC. 2019. Nitrogen enrichment accelerates mangrove range expansion in the temperate–tropical ecotone. Ecosystems 23:703–14.

    Google Scholar 

  • Devaney JL, Lehmann M, Feller IC, Parker JD. 2017. Mangrove microclimates alter seedling dynamics at the range edge. Ecology 98:2513–20.

    PubMed  Google Scholar 

  • Doyle TW, Krauss KW, Conner WH, From AS. 2010. Predicting the retreat and migration of tidal forests along the northern Gulf of Mexico under sea-level rise. For Ecol Manag 259:770–7.

    Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–8.

    CAS  Google Scholar 

  • Durango-Cordero J, Satyanarayana B, Zhang B. 2013. Vegetation structure at Zhangiang Mangrove National Nature Reserve (ZMNNR), P.R. China: acomparison between original and non-original trees using ground truthing, remote sensing and GIS techniques.

  • Ehrenfeld JG. 2010. Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80.

    Google Scholar 

  • Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, William V, Stinson KA, Stone JK, Swan CM, Thompson J, Holle V, Webster JR, Ellisonl AM, Bank MS, Clinton BD, Colburnm EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR. 2005. Loss of foundation species: consequences for the structure and dynamics of forest ecosystems. Front Ecol Environ 3:479–86.

    Google Scholar 

  • Enríquez S, Duarte CM, Sand-Jensen K. 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–71.

    PubMed  Google Scholar 

  • Eslami-Andargoli L, Dale P, Sipe N, Chaseling J. 2009. Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar Coast Shelf Sci 85:292–8. https://doi.org/10.1016/j.ecss.2009.08.011.

    Article  Google Scholar 

  • Evans RD, Bloom AJ, Sukrapanna SS, Ehleringer JR. 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:1317–23.

    Google Scholar 

  • Feher LC, Osland MJ, Griffith KT, Grace JB, Howard RJ, Stagg CL, Enwright NM, Krauss KW, Gabler CA, Day RH, Rogers K. 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8:2–23.

    Google Scholar 

  • Feller IC, Lovelock CE, McKee KL. 2007. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus Phosphorus limited mangrove ecosystems. Ecosystems 10:347–59. https://doi.org/10.1007/s10021-007-9025-z. Last accessed 02/08/2011

  • Feller IC, Lovelock CE, Piou C. 2009. Growth and nutrient conservation in Rhizophora mangle in response to fertilization along latitudinal and tidal gradients. Smithson Contrib Mar Sci 38:345–58.

    Google Scholar 

  • Gallagher JL. 1975. Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. Am J Bot 62:644–8.

    CAS  Google Scholar 

  • Guo H, Weaver C, Charles SP, Whitt A, Dastidar S, D’Odorico P, Fuentes JD, Kominoski JS, Armitage AR, Pennings SC. 2017. Coastal regime shifts: Rapid responses of coastal wetlands to changes in mangrove cover. Ecology 98:762–72.

    PubMed  Google Scholar 

  • Hartig F. 2017. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.1, 5(5).

  • Hughes RF, Archer SR, Asner GP, Wessman CA, McMurtry C, Nelson J, Ansley RJ. 2006. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Glob Change Biol 12:1733–47.

    Google Scholar 

  • IPCC. 2014. Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. (Pachauri RK, Meyer LA, editors.). Geneva: IPCC

  • Jones JA, Cherry JA, McKee KL. 2016. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions. Estuar Coast Shelf Sci 169:38–45. https://doi.org/10.1016/j.ecss.2015.11.033.

    CAS  Article  Google Scholar 

  • Kauffman JB, Donato DC. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Cent Int For Res 86:40. http://www.amazonico.org/speclab/SiteAssets/SitePages/Methods/Mangrove-biomass-CIFOR.pdf

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–5.

    Google Scholar 

  • Kinney EL, Valiela I. 2013. Changes in δ15 N in salt marsh sediments in a long-term fertilization study. Mar Ecol Prog Ser 477:41–52.

    CAS  Google Scholar 

  • Lee SY, Primavera JH, Dahdouh-Guebas F, Mckee K, Bosire JO, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C, Mendelssohn I, Mukherjee N, Record S. 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–43.

    Google Scholar 

  • Lee TM, Yeh HC. 2009. Applying remote sensing techniques to monitor shifting wetland vegetation: a case study of Danshui River estuary mangrove communities. Taiwan. Ecol Eng 35:487–96.

    Google Scholar 

  • Leopold A, Marchand C, Deborde J, Chaduteau C, Allenbach M. 2013. Influence of mangrove zonation on CO2 fluxes at the sediment-air interface (New Caledonia). Geoderma 202–203:62–70.

    Google Scholar 

  • Liao JD, Boutton TW, Jastrow JD. 2006. Organic matter turnover in soil physical fractions following woody plant invasion of grassland: Evidence from natural 13C and 15N. Soil Biol Biochem 38:3197–210.

    CAS  Google Scholar 

  • Liu X, Xiong Y, Liao B. 2017. Relative contributions of leaf litter and fine roots to soil organic matter accumulation in mangrove forests. Plant Soil 421:493–503.

    CAS  Google Scholar 

  • Lovelock CE, Adame MF, Bennion V, Hayes M, O’Mara J, Reef R, Santini NS. 2014. Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove forests and saltmarshes of South East Queensland, Australia. Estuaries and Coasts 37:763–71.

    CAS  Google Scholar 

  • Mancera JE, Twilley RR, Rivera-monroy VH. 2009. Carbon (Δ13C) and nitrogen (Δ15 N) isotopic discrimination in mangroves in Florida Coastal Everglades as a function of environmental stress. Contrib Mar Sci 38:109–29.

    Google Scholar 

  • McKee KL, Faulkner PL. 2000. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize. Atoll Res Bull 468:47–58.

    Google Scholar 

  • McKee KL, Feller IC, Popp M, Wanek W. 2002. Mangrove isotopic (δ15 N and δ13C) fractionation across a nitrogen vs. phosphorus limitation gradient. Ecology 83:1065–75.

    Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW. 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Bot 75:1352–9.

    Google Scholar 

  • McKee KL, Rooth JE, Feller IC. 2007. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the Caribbean. Ecol Appl 17:1678–93.

    PubMed  Google Scholar 

  • McLatchey GP, Reddy KR. 1998. Regulation of organic matter decompostion and nutrient release in a wetland soil. J Environ Qual 27:1268–74.

    CAS  Google Scholar 

  • Mendelssohn IA, Sorrell BK, Brix H, Schierup HH, Lorenzen B, Maltby E. 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquat Bot 64:381–98.

    CAS  Google Scholar 

  • Middleton BA, McKee KL. 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–28.

    Google Scholar 

  • Montané F, Romanyà J, Rovira P, Casals P. 2010. Aboveground litter quality changes may drive soil organic carbon increase after shrub encroachment into mountain grasslands. Plant Soil 337:151–65.

    Google Scholar 

  • Montoya JP, Mccarthy JJ. 1995. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J Plankton Res 17:439–64.

    CAS  Google Scholar 

  • Moore T, Blodau C, Turunen J, Roulet N, Richard PJH. 2004. Patterns of nitrogen and sulfur accumulation and retention in ombrotrophic bogs, eastern Canada. Glob Chang Biol 11:356–67.

    Google Scholar 

  • Mueller P, Schile-Beers LM, Mozdzer TJ, Chmura GL, Dinter T, Kuzyakov Y, De Groot AV, Esselink P, Smit C, D’Alpaos A, Ibáñez C, Lazarus M, Neumeier U, Johnson BJ, Baldwin AH, Yarwood SA, Montemayor DI, Yang Z, Wu J, Jensen K, Nolte S. 2018. Global-change effects on early-stage decomposition processes in tidal wetlands-implications from a global survey using standardized litter. Biogeosciences 15:3189–202.

    CAS  Google Scholar 

  • Nadelhoffer KJ, Fry B. 1994. Nitrogen isotope studies in forest ecosystems. In: Stable isotopes in ecology and environmental science (Lajtha K, Michener R, editors), pp 23–44

  • Nadelhoffer K, Shaver G, Fry B, Giblin A, Johnson L, Mckane R. 1996. 15N natural abundances and use by tundra plants. Oecologia 107:386–94.

    CAS  PubMed  Google Scholar 

  • Norris MD, Blair JM, Johnson LC. 2001. Land cover change in eastern kansas: Litter dynamics of closed-canopy eastern redcedar forests in tallgrass prairie. Can J Bot 79:214–22.

    Google Scholar 

  • Osland MJ, Feher LC, Griffith KT, Cavanaugh KC, Enwright NM, Day RH, Stagg CL, Krauss KW, Howard RJ, Grace JB, Rogers K. 2017. Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecol Monogr 87:341–59.

    Google Scholar 

  • Ouyang X, Lee SY, Connolly RM. 2017. The role of root decomposition in global mangrove and saltmarsh carbon budgets. Earth-Science Rev 166:53–63. https://doi.org/10.1016/j.earscirev.2017.01.004.

    CAS  Article  Google Scholar 

  • Perry CL, Mendelssohn IA. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29:396–406.

    Google Scholar 

  • Piccolo MC, Neill C, Melillo JM, Cerri CC, Steudler PA. 1996. 15N natural abundance in forest and pasture soils of the Brazilian Amazon Basin. Plant Soil 182:249–58.

    CAS  Google Scholar 

  • Power ME, Parker MS, Wootton JT. 1996. Disturbance and food chain lengths in rivers. Boston, MA: Springer.

    Google Scholar 

  • Prescott CE. 2010. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–49.

    CAS  Google Scholar 

  • Ratajczak Z, Nippert JB, Collins SL. 2012. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93:697–703.

    PubMed  Google Scholar 

  • Reddy KR, Delaune RD. 2008. Biogeochemisty of Wetlands. Boca Raton: CRC Press.

    Google Scholar 

  • Reis CRG, Nardoto GB, Rochelle ALC, Vieira SA, Oliveira RS. 2017. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia 183:841–8.

    PubMed  Google Scholar 

  • Rodriguez W, Feller IC, Cavanaugh KC. 2016. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Glob Ecol Conserv 7:245–61. https://doi.org/10.1016/j.gecco.2016.07.005.

    Article  Google Scholar 

  • Ross MS, Meeder JF, Sah JP, Ruiz PL, Telesnicki GJ. 2000. The Southeast saline Everglades revisited: 50 years of coastal vegetation change. J Veg Sci 11:101–12.

    Google Scholar 

  • Saintilan N, Rogers K. 2015. Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytol 205:1062–70.

    PubMed  Google Scholar 

  • Saintilan N, Williams RJ. 1999. Mangrove transgression into saltmarsh environments in south-east Australia. Glob Ecol Biogeogr 8:117–24. https://doi.org/10.1046/j.1365-2699.1999.00133.x

    Article  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW. 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–57.

    PubMed  Google Scholar 

  • Simpson LT, Feller IC, Chapman SK. 2013. Effects of competition and nutrient enrichment on Avicennia germinans in the salt marsh-mangrove ecotone. Aquat Bot 104:55–9.

    Google Scholar 

  • Simpson LT, Osborne TZ, Duckett LJ, Feller IC. 2017. Carbon Storages along a Climate Induced Coastal Wetland Gradient. Wetlands 37:1023–35.

    Google Scholar 

  • Simpson LT, Stein CM, Osborne TZ, Feller IC. 2019. Mangroves dramatically increase carbon storage after 3 years of encroachment. Hydrobiologia 0123456789:1–14. https://doi.org/10.1007/s10750-019-3905-z

  • Skelton NJ, Allaway WG. 1996. Oxygen and pressure changes measured in situ during flooding in roots of the Grey Mangrove Avicennia marina (Forssk.) Vierh. Aquat Bot 54:165–75.

    Google Scholar 

  • Smith RS, Blaze JA, Osborne TZ, Byers JE. 2018. Facilitating your replacement? Ecosystem engineer legacy affects establishment success of an expanding competitor. Oecologia 188:251–62. https://doi.org/10.1007/s00442-018-4184-5.

    Article  PubMed  Google Scholar 

  • Stevens PW, Fox SL, Montague CL. 2006. The interplay between mangroves and saltmarshes at the transition between temperate and subtropical climate in Florida. Wetl Ecol Manag 14:435–44.

    Google Scholar 

  • Team R. 2017. R: a language and Environment for Statistical Computing, Vienna, Austria. https://www.R-project.org.

  • Turner GL, Bergersen FJ, Tantala H. 1983. Natural enrichment of 15N during decomposition of plant material in soil. Soil Biol Biochem 15:495–7.

    CAS  Google Scholar 

  • Valiela I, Wilson J, Buchsbaum R, Rietsma C, Bryant D, Foreman K, Teal J. 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull Mar Sci 35:261–9.

    Google Scholar 

  • Van der Valk AG, Attiwill PM. 1983. Above-and below-ground litter decomposition in an Australian salt marsh. Aust J Ecol 8:441–7.

    Google Scholar 

  • Webster JR, Benfield EF. 1986. Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Evol Syst 17:567–94.

    Google Scholar 

  • Wigand C, McKinney RA, Cole ML, Thursby GB, Cummings J. 2007. Varying stable nitrogen isotope ratios of different coastal marsh plants and their relationships with wastewater nitrogen and land use in New England, USA. Environ Monit Assess 131:71–81.

    CAS  PubMed  Google Scholar 

  • Wooller M, Smallwood B, Jacobson M, Fogel M. 2003. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia 499:13–23.

    CAS  Google Scholar 

  • Yando ES, Osland MJ, Hester MW. 2018. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces. Oecologia 187:319–31. https://doi.org/10.1007/s00442-018-4098-2.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Aeronautics and Space Administration (NASA) Climate and Biological Response program (NNX11AO94G) and the National Science Foundation (NSF) MacroSystems Biology program (EF1065821). The authors would like to thank Florida State Parks, the Merritt Island National Wildlife Refuge, Guana Tolomato Matanzas National Estuarine Research Reserve, and Canaveral National Seashore for permits and unabridged access to their parks. We also thank K.V. Curtis for laboratory nutrient analysis and T.Z. Osborne, L.J. Duckett, M.H. Lehmann and Z.R. Foltz for field and technical assistance. We sincerely thank the three anonymous reviewers for their edits and suggestions, which greatly improved this manuscript. This is Contribution No. 1144 of the Smithsonian Marine Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loraé T. Simpson.

Additional information

Author’s Contribution

LTS and ICF designed the study; LTS performed the research; LTS and JAC analyzed the data; RSS contributed additional methods and data; LTS, JAC, RSS and ICF wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simpson, L.T., Cherry, J.A., Smith, R.S. et al. Mangrove Encroachment Alters Decomposition Rate in Saltmarsh Through Changes in Litter Quality. Ecosystems 24, 840–854 (2021). https://doi.org/10.1007/s10021-020-00554-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00554-z

Keywords

  • Decay rate
  • Litter quality
  • Stable isotopes
  • Mangrove encroachment
  • δ15N
  • Foundation species