Skip to main content

Land-Use Legacies and Climate Change as a Double Challenge to Oak Forest Resilience: Mismatches of Geographical and Ecological Rear Edges

Abstract

Global change challenges ecosystems in xeric locations transformed by intensive human use. Resilience to drought of relict Mediterranean Quercus pyrenaica populations in the southern Iberian Peninsula was analyzed in relation to historical records of land use, combining dendroecological growth of adult trees and greenness (EVI) as proxies for secondary and primary growth. The growth trends reflected a strong influence of old land-use legacies (firewood removal) in the current forest structure. Trees were highly sensitive to moisture availability, but both primary growth and secondary growth expressed high resilience to drought events over the short and the long term. Resilience and the tree growth response to climate followed a water-stress gradient. A positive growth trend since the late 1970s was particularly evident in mesic (colder and wetter) high-elevation stands, but absent in the most xeric (warmer and drier) stands. The high values of resilience observed suggest that the studied Q. pyrenaica populations are located in a geographical but not a climatic or ecological rear edge. Resilience of oak stands to drought events was not spatially homogeneous across the mountain range, due to differences in ecological conditions and/or past management legacies. This is particularly relevant for rear-edge populations where topographic and biophysical variability can facilitate the existence of refugia.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Data Availability

The data supporting our paper will be available in the following URL https://doi.org/10.1594/PANGAEA.922054.

References

  1. Abeli T, Gentili R, Mondoni A, Orsenigo S, Rossi G. 2014. Effects of marginality on plant population performance. J Biogeogr 41:239–49.

    Google Scholar 

  2. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–84.

    Google Scholar 

  3. Babst F, Poulter B, Bodesheim P, Mahecha MD, Frank DC. 2017. Improved tree-ring archives will support earth-system science. Nat Ecol Evol 1:0008.

    Google Scholar 

  4. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D. 2013. Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–17.

    Google Scholar 

  5. Bellingham PJ, Sparrow AD. 2000. Resprouting as a life history strategy in woody plant communities. Oikos 89:409–16.

    Google Scholar 

  6. Bhuyan U, Zang C, Menzel A. 2017. Different responses of multispecies tree ring growth to various drought indices across Europe. Dendrochronologia 44:1–8.

    Google Scholar 

  7. Biondi F, Qeadan F. 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Res 64:81–96.

    Google Scholar 

  8. Bonet FJ, Aspizua R, Navarro J. 2016. History of Sierra Nevada forest management: Implications for adaptation to global change. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Junta de Andalucía: Consejería de Medio Ambiente y Ordenación del Territorio. p 153–6.

    Google Scholar 

  9. Bunn AG. 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28:251–8.

    Google Scholar 

  10. Camacho-Olmedo M, García-Martínez P, Jiménez-Olivencia Y, Menor-Toribio J, Paniza-Cabrera A. 2002. Dinámica evolutiva del paisaje vegetal de la Alta Alpujarra granadina en la segunda mitad del s XX. Cuadernos Geográficos 32:25–42.

    Google Scholar 

  11. Camarero J, Franquesa M, Sangüesa-Barreda G. 2015a. Timing of drought triggers distinct growth responses in Holm oak: implications to predict warming-induced forest defoliation and growth decline. Forests 6:1576–97.

    Google Scholar 

  12. Camarero J, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. 2015b. To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103:44–57.

    CAS  Google Scholar 

  13. Cañellas I, Del-Río M, Roig S, Montero G. 2004. Growth response to thinning in Quercus pyrenaica Willd. Coppice stands in Spanish central mountain. Ann For Sci 61:243–50.

    Google Scholar 

  14. Castro J, Zamora R, Hódar JA, Gómez JM. 2004. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: consequences of being in a marginal Mediterranean habitat. J Ecol 12:266–77.

    Google Scholar 

  15. Cavin L, Jump AS. 2017. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. Not the equatorial range edge. Glob Change Biol 23:362–79.

    Google Scholar 

  16. Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E. 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20:91–8.

    Google Scholar 

  17. Coulthard BL, Touchan R, Anchukaitis KJ, Meko DM, Sivrikaya F. 2017. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean. Environ Res Lett 12:084008.

    Google Scholar 

  18. del Río S, Herrero L, Penas Á. 2007. Bioclimatic analysis of the Quercus pyrenaica forests in Spain. Phytocoenologia 37:541–60.

    Google Scholar 

  19. Di Filippo A, Alessandrini A, Biondi F, Blasi S, Portoghesi L, Piovesan G. 2010. Climate change and oak growth decline: dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) Old stored coppice in Central Italy. Ann For Sci 67:706.

    Google Scholar 

  20. Dobbertin M. 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur J For Res 124:319–33.

    Google Scholar 

  21. Doblas-Miranda E, Alonso R, Arnan X, Bermejo V, Brotons L, de Heras J, Estiarte M, Hódar JA, Llorens P, Lloret F, López-Serrano FR, Martínez-Vilalta J, Moya D, Penuelas J, Pino J, Rodrigo A, Roura-Pascual N, Valladares F, Vilà M, Zamora R, Retana J. 2017. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: beyond drought effects. Glob Planet Chang 148:42–54.

    Google Scholar 

  22. Dorado-Liñán I, Akhmetzyanov L, Menzel A. 2017a. Climate threats on growth of rear-edge European beech peripheral populations in Spain. Int J Biometeorol 61:2097–110.

    PubMed  Google Scholar 

  23. Dorado-Liñán I, Cañellas I, Valbuena-Carabaña M, Gil L, Gea-Izquierdo G. 2017b. Coexistence in the Mediterranean-Temperate transitional border: multi-century dynamics of a mixed old-growth forest under global change. Dendrochronologia 44:48–57.

    Google Scholar 

  24. Dorado-Liñán I, Piovesan G, Martínez-Sancho E, Gea-Izquierdo G, Zang C, Cañellas I, Castagneri D, Di Filippo A, Gutiérrez E, Ewald J, Fernández-de-Uña L, Hornstein D, Jantsch MC, Levanič T, Mellert KH, Vacchiano G, Zlatanov T, Menzel A. 2019. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob Change Biol 25:1296–314.

    Google Scholar 

  25. Dorado-Liñán I, Zorita E, Martínez-Sancho E, Gea-Izquierdo G, Filippo AD, Gutiérrez E, Levanic T, Piovesan G, Vacchiano G, Zang C, Zlatanov T, Menzel A. 2017c. Large-scale atmospheric circulation enhances the Mediterranean East-West tree growth contrast at rear-edge deciduous forests. Agric For Meteorol 239:86–95.

    Google Scholar 

  26. Fatichi S, Leuzinger S, Körner C. 2014. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–95.

    CAS  PubMed  Google Scholar 

  27. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A. 2003. The importance of land-use legacies to ecology and conservation. BioScience 53:77–88.

    Google Scholar 

  28. Franco A. 1990. Quercus L. In: Castroviejo A, Laínz M, López-González G, Montserrat P, Muñoz-Garmendia F, Paiva J, Villar L, (eds.) Flora Ibérica. Vol. 2. Madrid: Real Jardín Botánico, CSIC, pp 15–36.

  29. Fritts HC. 1976. Tree rings and climate. London: Academic Press.

    Google Scholar 

  30. García-González I, Souto-Herrero M. 2017. Earlywood vessel area of Quercus pyrenaica Willd. Is a powerful indicator of soil water excess at growth resumption. Eur J For Res 136:329–44.

    Google Scholar 

  31. Gaston KJ. 2009. Geographic range limits: achieving synthesis. Proc R Soc B Biol Sci 276:1395–406.

    Google Scholar 

  32. Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martín-Hernández N, Martínez del Castillo E, Ribas M, García-González I, Silla F, Camisón A, Génova M, Olano JM, Longares LA, Hevia A, Tomás-Burguera M, Galván JD. 2018. Forest resilience to drought varies across biomes. Glob Change Biol 24:2143–58.

    Google Scholar 

  33. Gea-Izquierdo G, Cañellas I. 2009. Analysis of holm oak intraspecific competition using gamma regression. For Sci 55:310–22.

    Google Scholar 

  34. Gea-Izquierdo G, Cañellas I. 2014. Local climate forces instability in long-term productivity of a Mediterranean oak along climatic gradients. Ecosystems 17:228–41.

    Google Scholar 

  35. Gea-Izquierdo G, Cherubini P, Cañellas I. 2011. Tree-rings reflect the impact of climate change on Quercus ilex L. Along a temperature gradient in Spain over the last 100years. For Ecol Manag 262:1807–16.

    Google Scholar 

  36. Gea-Izquierdo G, Fernández-de-Uña L, Cañellas I. 2013. Growth projections reveal local vulnerability of Mediterranean oaks with rising temperatures. For Ecol Manag 305:282–93.

    Google Scholar 

  37. Gea-Izquierdo G, Montes F, Gavilán RG, Cañellas I, Rubio A. 2015. Is this the end? Dynamics of a relict stand from pervasively deforested ancient Iberian pine forests. Eur J For Res 134:525–36.

    Google Scholar 

  38. Gea-Izquierdo G, Nicault A, Battipaglia G, Dorado-Liñán I, Gutiérrez E, Ribas M, Guiot J. 2017. Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Glob Change Biol 23:2915–27.

    Google Scholar 

  39. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–7.

    Google Scholar 

  40. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M. 2008. A European daily high-resolution gridded data set of surface temperature and precipitation for 19502006. J Geophys Res 113:D20119.

    Google Scholar 

  41. Herrero A, Rigling A, Zamora R. 2013. Varying climate sensitivity at the dry distribution edge of Pinus sylvestris and P. Nigra. For Ecol Manag 308:50–61.

    Google Scholar 

  42. Herrero A, Zamora R. 2014. Plant responses to extreme climatic events: a field test of resilience capacity at the southern range edge. PLoS One 9:e87842.

    PubMed  PubMed Central  Google Scholar 

  43. Hodgson D, McDonald JL, Hosken DJ. 2015. What do you mean, ‘resilient’? Trends Ecol Evol 30:503–6.

    PubMed  Google Scholar 

  44. Holling CS. 1973. Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23.

    Google Scholar 

  45. Holmes RL. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78.

    Google Scholar 

  46. Huang M, Wang X, Keenan TF, Piao S. 2018. Drought timing influences the legacy of tree growth recovery. Glob Change Biol 24:3546–59.

    Google Scholar 

  47. Ingrisch J, Bahn M. 2018. Towards a comparable quantification of resilience. Trends Ecol Evol 33:251–9.

    PubMed  Google Scholar 

  48. Jiménez-Olivencia Y, Porcel L, Caballero A. 2015. Medio siglo en la evolución de los paisajes naturales y agrarios de Sierra Nevada (España). Boletín de la Asociación de Geógrafos Españoles 68:205–32.

    Google Scholar 

  49. Körner C. 2013. Growth controls photosynthesis mostly. Nova Acta Leopoldina 114:273–83.

    Google Scholar 

  50. Lloret F, Escudero A, Iriondo JM, Martınez-Vilalta J, Valladares F. 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Glob Change Biol 18:797–805.

    Google Scholar 

  51. Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.

    Google Scholar 

  52. Lloret F, Siscart D, Dalmases C. 2004. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob Change Biol 10:2092–9.

    Google Scholar 

  53. Lorite J, Salazar C, Peñast J, Valle F. 2008. Phytosociological review on the forests of Quercus pyrenaica Willd. Acta Botanica Gallica 155:219–33.

    Google Scholar 

  54. Mair P, Wilcox R. 2020. Robust statistical methods in R using the WRS2 package. Behav Res Methods 52:464–488.

    PubMed  Google Scholar 

  55. Martínez-Sancho E, Gutiérrez Merino E. 2019. Evidence that the Montseny Mountains are still a good climatic refugium for the southernmost silver fir forest on the Iberian Peninsula. Dendrochronologia 56:125593.

    Google Scholar 

  56. Martínez-Vilalta J. 2018. The rear window: structural and functional plasticity in tree responses to climate change inferred from growth rings. Tree Physiol 38(2):155–8.

    PubMed  Google Scholar 

  57. Mausolf K, Härdtle W, Jansen K, Delory BM, Hertel D, Leuschner C, Temperton VM, von Oheimb G, Fichtner A. 2018. Legacy effects of land-use modulate tree growth responses to climate extremes. Oecologia 187:825–37.

    PubMed  Google Scholar 

  58. Munteanu C, Kuemmerle T, Keuler NS, Müller D, Balázs P, Dobosz M, Griffiths P, Halada L, Kaim D, Király G, Konkoly-Gyuró É, Kozak J, Lieskovsky J, Ostafin K, Ostapowicz K, Shandra O, Radeloff VC. 2015. Legacies of 19th century land use shape contemporary forest cover. Glob Environ Change 34:83–94.

    Google Scholar 

  59. Navarro-González I, Pérez-Luque AJ, Bonet FJ, Zamora R. 2013. The weight of the past: land-use legacies and recolonization of pine plantations by oak trees. Ecol Appl 23:1267–76.

    PubMed  Google Scholar 

  60. Nowacki GJ, Abrams MD. 1997. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origing oaks. Ecological Monographs 67:225–49.

    Google Scholar 

  61. Olalde M, Herrán A, Espinel S, Goicoechea PG. 2002. White oaks phylogeography in the Iberian Peninsula. For Ecol Manag 156:89–102.

    Google Scholar 

  62. Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD. 2020. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob Change Biol 26:1055–67.

    Google Scholar 

  63. Páscoa P, Gouveia C, Russo A, Trigo R. 2017. Drought trends in the Iberian Peninsula over the last 112 years. Adv Meteorol. 4653126. https://doi.org/10.1155/2017/4653126

    Article  Google Scholar 

  64. Peña-Gallardo M, Vicente-Serrano S, Camarero J, Gazol A, Sánchez-Salguero R, Domínguez-Castro F, El Kenawy A, Beguería-Portugés S, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar P, Linares J, Martínez del Castillo E, Ribas Matamoros M, García-González I, Silla F, Camisón Á, Génova M, Olano J, Longares L, Hevia A, Galván J. 2018. Drought sensitiveness on forest growth in peninsular Spain and the Balearic Islands. Forests 9:524.

    Google Scholar 

  65. Peñuelas J, Lloret F, Montoya R. 2001. Severe drought effects on Mediterranean woody Flora in Spain. For Sci 47:214–18.

    Google Scholar 

  66. Pérez-Luque AJ, Pérez-Pérez R, Bonet-García FJ, Magaña PJ. 2015a. An ontological system based on MODIS images to assess ecosystem functioning of Natura 2000 habitats: a case study for Quercus pyrenaica forests. Int J Appl Earth Observ Geoinf 37:142–51.

    Google Scholar 

  67. Pérez-Luque AJ, Zamora R, Bonet FJ, Pérez-Pérez R. 2015b. Dataset of MIGRAME project (global change, altitudinal range shift and colonization of degraded habitats in Mediterranean mountains). PhytoKeys 56:61–81.

    Google Scholar 

  68. Piovesan G, Biondi F, Filippo AD, Alessandrini A, Maugeri M. 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) Forests of the central Apennines, Italy. Glob Change Biol 14:1265–81.

    Google Scholar 

  69. Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD. 2017. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm: the centre-periphery hypothesis. Biol Rev 92:1877–909.

    PubMed  Google Scholar 

  70. Rehm EM, Olivas P, Stroud J, Feeley KJ. 2015. Losing your edge: climate change and the conservation value of range-edge populations. Ecol Evol 5:4315–26.

    PubMed  PubMed Central  Google Scholar 

  71. Reyes-Díez A, Alcaraz-Segura D, Cabello-Piñar J. 2015. Implicaciones del filtrado de calidad del índice de vegetación EVI para el seguimiento funcional de ecosistemas. Revista de Teledeteccion 2015:11–29.

    Google Scholar 

  72. Rubino DL, McCarthy BC. 2004. Comparative analysis of dendroecological methods used to assess disturbance events. Dendrochronologia 21:97–115.

    Google Scholar 

  73. Sagarin RD, Gaines SD. 2002. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecol Lett 5:137–47.

    Google Scholar 

  74. Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF. 2009. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc Natl Acad Sci 106:20348–53.

    CAS  PubMed  Google Scholar 

  75. Samanta A, Ganguly S, Vermote E, Nemani RR, Myneni RB. 2012. Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000 to 2009. Environ Res Lett 7:024018.

    Google Scholar 

  76. Sánchez de Dios R, Gómez C, Aulló I, Cañellas I, Gea-Izquierdo G, Montes F, Sainz-Ollero H, Velázquez JC, Hernández L. 2020. Fagus sylvatica L. Peripheral populations in the mediterranean iberian peninsula: climatic or anthropic relicts? Ecosystems. https://doi.org/10.1007/s10021-020-00513-8.

    Article  Google Scholar 

  77. Sánchez-Salguero R, Navarro-Cerrillo RM, Swetnam TW, Zavala MA. 2012. Is drought the main decline factor at the rear edge of Europe? The case of southern Iberian pine plantations. For Ecol Manag 271:158–69.

    Google Scholar 

  78. Schwarz J, Skiadaresis G, Kohler M, Kunz J, Schnabel F, Vitali V, Bauhus J. 2020. Quantifying growth responses of trees to droughta critique of commonly used resilience indices and recommendations for future studies. Curr Forest Rep.

  79. Serra-Diaz JM, Scheller RM, Syphard AD, Franklin J. 2015. Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc Ecol 30:1039–53.

    Google Scholar 

  80. Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Ann Rev Ecol Evol Syst 40:415–36.

    Google Scholar 

  81. Spinoni J, Naumann G, Vogt J, Barbosa P. 2015. European drought climatologies and trends based on a multi-indicator approach. Glob Planet Change 127:50–7.

    Google Scholar 

  82. Spinoni J, Vogt JV, Naumann G, Barbosa P, Dosio A. 2018. Will drought events become more frequent and severe in Europe? Int J Climatol 38:1718–36.

    Google Scholar 

  83. Stagge JH, Kingston DG, Tallaksen LM, Hannah DM. 2017. Observed drought indices show increasing divergence across Europe. Sci Rep 7:14045.

    PubMed  PubMed Central  Google Scholar 

  84. Tessier L, Nola P, Serre-Bachet F. 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–67.

    Google Scholar 

  85. Trigo RM, Añel JA, Barriopedro D, García-Herrera R, Gimeno L, Castillo R, Allen MR, Massey A. 2013. The record winter drought of 2011–12 in the Iberian Peninsula. In: Peterson TC, Hoerling MP, Stott PA, Herring S, (eds.) Explaining Extreme Events of 2012 from a Climate Perspective, vol 94, pp S41–5.

  86. Valbuena-Carabaña M, Gil L. 2013. Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) At its southern boundary. Tree Genet Genomes 9:1129–42.

    Google Scholar 

  87. Valbuena-Carabaña M, Gil L. 2017. Centenary coppicing maintains high levels of genetic diversity in a root resprouting oak (Quercus pyrenaica Willd). Tree Genet Genomes 13:28.

    Google Scholar 

  88. Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–718.

    Google Scholar 

  89. Vicente-Serrano SM, Gouveia C, Camarero JJ, Beguería S, Trigo R, López-Moreno JI, Azorín-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A. 2013. Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci 110:52–7.

    CAS  PubMed  Google Scholar 

  90. Vicente-Serrano SM, López-Moreno JI, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorín-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F. 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001.

    Google Scholar 

  91. Vilà-Cabrera A, Espelta JM, Vayreda J, Pino J. 2017. ‘New forests’ from the twentieth century are a relevant contribution for C storage in the Iberian Peninsula. Ecosystems 20:130–43.

    Google Scholar 

  92. Vilà-Cabrera A, Jump AS. 2019. Greater growth stability of trees in marginal habitats suggests a patchy pattern of population loss and retention in response to increased drought at the rear edge: tree growth responses at the rear edge. Ecol Lett 22:1439–48.

    PubMed  Google Scholar 

  93. Vilà-Cabrera A, Martínez-Vilalta J, Vayreda J, Retana J. 2011. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol Appl 21:1162–72.

    PubMed  Google Scholar 

  94. Vilà-Cabrera A, Premoli AC, Jump AS. 2019. Refining predictions of population decline at species’ rear edges. Glob Change Biol 25:1549–60.

    Google Scholar 

  95. Wilcox R. 2012. Introduction to robust estimation and hypothesis testing. 3rd edn. New York: Academic Press.

    Google Scholar 

  96. Zang C, Biondi F. 2015. Treeclim: an R package for the numerical calibration of proxy-climate relationships. Ecography 38:431–6.

    Google Scholar 

  97. Zhang Y, Peng C, Li W, Fang X, Zhang T, Zhu Q, Chen H, Zhao P. 2013. Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: recent progress and future challenges. Environ Rev 21:103–15.

    Google Scholar 

Download references

Acknowledgements

We would like to thank to Sammy L. Behle, F.J. Bonet, and M. Suárez-Muñoz for field assistance. A. Reyes (in memoriam) and J. Blanco helped in the filtering of satellite data. F.J. Cano-Manuel and F.J. Navarro provided worthwhile information about oak-management projects in Sierra Nevada. We are grateful for the comments made by F.J. Bonet on an earlier version of the manuscript. We also thank two anonymous reviewers for their thoughtful comments on previous versions of the manuscript that have contributed to improve it significantly. AJPL wishes to thank the invaluable support received from his family over the years. This research work was conducted in the collaborative framework of the “Sierra Nevada Global Change Observatory” monitoring program http://obsnev.es. We thank to LIFE-ADAPTAMED (LIFE14 CCA/ES/000612): Protection of key ecosystem services by adaptive management of Climate Change endangered Mediterranean socioecosystems for the funding support, and also to H2020 project European Long-Term Ecosystem and socio-ecological Research Infrastructure (eLTER) for partial funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. J. Pérez-Luque.

Additional information

Author Contributions

AJPL, GGI and RZ conceived of the study, conducted field work, and collected the data. AJPL and GGI performed the lab work. AJPL analyzed data and led the writing of the paper. All authors contributed in the writing process to the drafts and gave final approval for publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2775 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez-Luque, A.J., Gea-Izquierdo, G. & Zamora, R. Land-Use Legacies and Climate Change as a Double Challenge to Oak Forest Resilience: Mismatches of Geographical and Ecological Rear Edges. Ecosystems 24, 755–773 (2021). https://doi.org/10.1007/s10021-020-00547-y

Download citation

Keywords

  • Extreme drought
  • Resilience
  • Rear edge
  • Quercus pyrenaica
  • Tree growth
  • Dendroecology
  • Remote sensing