Temporal Coherence Between Lake and Landscape Primary Productivity

Abstract

Understanding the patterns and drivers of primary productivity is a major goal of ecology, but little is known about whether the primary productivities of different types of ecosystems—here, lakes and the landscapes in which they are embedded—fluctuate in related ways through time. Due to shared climatic variation and well-known connections between lake and terrestrial ecosystems, such as nutrient and resource subsidies, we hypothesized that interannual fluctuations in aquatic and terrestrial primary productivity indices could be coherent. We also expected that lake and watershed characteristics could modify the strength and nature of primary productivity relationships. We applied wavelet coherence analyses to time series of lake chlorophyll-a and satellite-derived NDVI to examine coherence between lakes and land, and used random forest regression and generalized additive models to evaluate why coherence varies among lakes. There can be substantial coherence between lake and terrestrial primary productivity, but the strength and phase (direction and time lag) of this relationship vary widely, and there were marked differences between short (2–4-year periods of oscillation) and long (> 4-year periods of oscillation) timescales. Across all timescales, variables associated with the connectedness of lakes to their watersheds were consistently the important explanatory variables of the strength and phase of coherence. The patterns observed in this study suggest the importance of cross-ecosystem flows, as opposed to shared climatic variation, in determining temporal coherence between lakes and the landscape.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Data Availability

Derived datasets and code for reproducing the analyses have been archived on Zenodo. The DOI is https://doi.org/10.5281/zenodo.3937417.

References

  1. Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P, Piao S, Sitch S, Viovy N, Wiltshire A, Zhao M. 2015. Spatiotemporal patterns of terrestrial gross primary production. Rev Geophys 53:785–818.

    Google Scholar 

  2. Anderson TL, Sheppard LW, Walter JA, Hendricks SP, Levine TD, White DS, Reuman DC. 2019. The dependence of synchrony on timescale and geography in freshwater plankton. Limnol Oceanogr 64:483–502. https://doi.org/10.1002/lno.11054.

    Article  Google Scholar 

  3. Aubinet M, Vesala T, Papale D, Eds. 2012. Eddy covariance: a practical guide to measurement and data analysis. Berlin: Springer.

    Google Scholar 

  4. Baines SB, Webster KE, Kratz TK, Carpenter SR, Magnuson JJ. 2000. Synchronous behavior of temperature, calcium, and chlorophyll in lakes of northern Wisconsin. Ecology 81:815–25.

    Google Scholar 

  5. Black BA, van der Sleen P, Di Lorenzo E, Griffin D, Sydeman WJ, Dunham JB, Rykaczewski RR, García-Reyes M, Safeeq M, Arismendi I, Bograd SJ. 2018. Rising synchrony controls western North American ecosystems. Glob Chang Biol 24:2305–14. https://doi.org/10.1111/gcb.14128.

    Article  PubMed  Google Scholar 

  6. Buffam I, Turner MG, Desai AR, Hanson PC, Rusak JA, Lottig NR, Stanley EH, Carpenter SR. 2011. Integrating aquatic and terrestrial components to construct a complete carbon budget for a north temperate lake district. Glob Chang Biol 17:1193–211.

    Google Scholar 

  7. Butman D, Stackpoole S, Stets E, McDonald CP, Clow DW, Striegl RG. 2016. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting. Proc Natl Acad Sci USA 113:58–63.

    CAS  PubMed  Google Scholar 

  8. Canham CD, Pace ML, Papaik MJ, Primack AGB, Roy KM, Maranger RJ, Curran RP, Spada DM. 2004. A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol Appl 14:839–54.

    Google Scholar 

  9. Cardille JA, Carpenter SR, Coe MT, Foley JA, Hanson PC, Turner MG, Vano JA. 2007. Carbon and water cycling in lake-rich landscape connections, lake hydrology, and biogeochemistry. J Geophys Res Biogeosci 112:1–18.

    Google Scholar 

  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–68.

    Google Scholar 

  11. Carpenter SR, Kitchell JF, Hodgson JR. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–9.

    Google Scholar 

  12. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–84.

    CAS  Google Scholar 

  13. Corman JR, Bertolet BL, Casson NJ, Sebestyen SD, Kolka RK, Stanley EH. 2018. Nitrogen and phosphorous loads to temperate seepage lakes associated with allochthonous dissolved organic carbon loads. Geophys Res Lett 45:5481–90.

    CAS  Google Scholar 

  14. Defriez EJ, Reuman DC. 2017. A global geography of synchrony for terrestrial vegetation. Glob Ecol Biogeogr 26:878–88.

    Google Scholar 

  15. Detenbeck NE, Johnston CA, Niemi GJ. 1993. Wetland effects on lake water quality in the Minneapolis/St. Paul metropolitan area. Landsc Ecol 8:39–61.

    Google Scholar 

  16. Dodson SI, Arnott SE, Cottingham KL. 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81:2662–79.

    Google Scholar 

  17. Downing AL, Brown BL, Perrin EM, Keitt TH, Leibold MA. 2008. Environmental fluctuations induce scale-dependent compensation and increase stability in plankton ecosystems. Ecology 89:3204–14.

    PubMed  Google Scholar 

  18. Downing JA. 2009. Plenary lecture global limnology: up–scaling aquatic services and processes to planet Earth. Verh Intern Verein Limnol 30:1149–1166. http://64.111.101.234/images/content/110128/SIL30_Downing_1149-1166_wm.pdf%5Cnhttps://loe.org/images/content/110128/SIL30_Downing_1149-1166_wm.pdf.

  19. Eidenshink JC. 1992. The 1990 conterminous U.S. AVHRR data set. Photogramm Eng Remote Sens 58:809–13.

    Google Scholar 

  20. Eidenshink JC. 2006. A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska. Photogramm Eng Remote Sens 72:1027–35.

    Google Scholar 

  21. Fergus CE, Lapierre JF, Oliver SK, Skaff NK, Cheruvelil KS, Webster K, Scott C, Soranno P. 2017. The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere 8:e01911.

    Google Scholar 

  22. Gergel SE, Turner MG, Kratz TK. 1999. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol Appl 9:1377–90.

    Google Scholar 

  23. Grinsted A, Moore JC, Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–6.

    Google Scholar 

  24. Harman CJ. 2015. Time-variable transit time distributions and transport: theory and application to storage-dependent transport of chloride in a watershed. Water Resour Res 51:1–30.

    CAS  Google Scholar 

  25. Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe PA, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM. 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93:143–57.

    CAS  Google Scholar 

  26. Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–54.

    Google Scholar 

  27. Hothorn T, Hornik K, Zeileis A. 2006. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–74. https://doi.org/10.1198/106186006X133933.

    Article  Google Scholar 

  28. Hothorn T, Hornik K, Zeileis A. 2019. Party: a Laboratory for recursive partitioning. https://cran.r-project.org/package=party.

  29. Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460:506–9.

    CAS  PubMed  Google Scholar 

  30. Kelly PT, Renwick WH, Knoll LB, Vanni MJ. 2019. Stream nitrogen and phosphorous loads are differentially affected by storm events and the difference may be exacerbated by conservation tillage. Environ Sci Technol 53:5613–21.

    CAS  PubMed  Google Scholar 

  31. Kelly PT, Zwart JA, Solomon CT, Jones SE. 2018. A framework for understanding variation in pelagic gross primary production of lake ecosystems. Ecosystems 21:1364–76.

    CAS  Google Scholar 

  32. Koenig WD, Knops JMH. 1998. Scale of mast-seeding and tree-ring growth. Nature 396:225–6.

    CAS  Google Scholar 

  33. Kratz TK, Webster KE, Bowser CJ, Magnuson JJ, Benson BJ. 1997. The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37:209–17.

    Google Scholar 

  34. Kuzyakov Y, Gavrichkova O. 2010. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–406.

    Google Scholar 

  35. Lara C, Cazelles B, Saldías GS, Flores RP, Paredes ÁL, Broitman BR. 2019. Coupled biospheric synchrony of the coastal temperate ecosystem in Northern Patagonia: a remote sensing analysis. Remote Sens 11:2092.

    Google Scholar 

  36. Liebhold AM, Koenig WD, Bjørnstad ON. 2004. Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–90. https://doi.org/10.1146/annurev.ecolsys.34.011802.132516.

    Article  Google Scholar 

  37. Magnuson JJ, Benson BJ, Kratz TK. 1990. Temporal coherence in the limnology of a suite of lakes in Wisconsin, U.S.A. Freshw Biol 23:145–59.

    Google Scholar 

  38. Martin SL, Soranno PA. 2006. Lake landscape position: relationships to hydrologic connectivity and landscape features. Limnol Oceanogr 51:801–14.

    CAS  Google Scholar 

  39. Melillo JM, McGuire AD, Kicklighter DW, Moore BIII, Vorosmarty CJ, Schloss AL. 1993. Global climate change and terrestrial net primary production. Nature 363:234–40.

    CAS  Google Scholar 

  40. Moran PAP. 1953. The statistical analysis of the Canadian lynx cycle. Aust J Ecol 1:291–8.

    Google Scholar 

  41. Ong JJL, Rountrey AN, Zinke J, Meeuwig JJ, Grierson PF, O’Donnell AJ, Newman SJ, Lough JM, Trougan M, Meekan MG. 2016. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia. Glob Chang Biol 22:2776–86.

    PubMed  Google Scholar 

  42. Pace ML, Cole JJ. 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnol Oceanogr 47:333–42.

    CAS  Google Scholar 

  43. Pham SV, Leavitt PR, McGowan S, Peres-Neto P. 2008. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol Oceanogr 53:728–42.

    Google Scholar 

  44. Qin B, Zhou J, Elser JJ, Gardner WS, Deng J, Brookes JD. 2020. Water depth underpins the relative roles and fates of nitrogen and phosphorous in lakes. Environ Sci Technol 54:3191–8.

    CAS  PubMed  Google Scholar 

  45. R Core Team. 2018. R: a language and environment for statistical computing. http://www.r-project.org.

  46. Reuman DC, Anderson TL, Walter JA, Zhao L, Sheppard LW. 2019. wsyn: wavelet approaches to synchrony in ecology and other fields.

  47. Ross MRV, Topp SN, Appling AP, Yang X, Kuhn C, Butman D, Simard M, Pavelsky TM. 2019. AquaSat: a data set to enable remote sensing of water quality for inland waters. Water Resour Res 55:10012–25.

    Google Scholar 

  48. Running SW, Thornton PE, Nemani R, Glassy JM. 2000. Global terrestrial gross and net primary productivity from the earth observing system. Methods Ecosyst Sci 44–57.

  49. Rusak JA, Yan ND, Somers KM. 2008. Regional climatic drivers of synchronous zooplankton dynamics in north-temperate lakes. Can J Fish Aquat Sci 65:878–89.

    Google Scholar 

  50. Scheuerell MD, Schindler DE. 2004. Changes in the spatial distribution of fishes in lakes along a residential development gradient. Ecosystems 7:98–106.

    Google Scholar 

  51. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala S, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72.

    CAS  PubMed  Google Scholar 

  52. Schlesinger WH, Bernhardt E. 2013. Biogeochemistry: an analysis of global change. 3rd edn. Cambridge: Academic Press.

    Google Scholar 

  53. Seekell DA, Lapierre J-F, Cheruvelil KS. 2018. A geography of lake carbon cycling. Limnol Oceanogr Lett 3:49–56.

    Google Scholar 

  54. Sheppard LW, Bell JR, Harrington R, Reuman DC. 2016. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat Clim Chang 6:610–13.

    Google Scholar 

  55. Sheppard LW, Defriez EJ, Reid PC, Reuman DC. 2019. Synchrony is more than the sum of its top-down and climatic parts: interacting Moran effects on phytoplankton in British seas. PLoS Comput Biol 15:e1006744.

    PubMed  PubMed Central  Google Scholar 

  56. Sheppard LW, Reid PC, Reuman DC. 2017. Rapid surrogate testing of wavelet coherences. Eur Phys J Nonlinear Biomed Phys 5.

  57. Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, Knorre AA, Linares JC, Resco de Dios V, Sánchez-Salguero R, Voltas J. 2016. Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proc Natl Acad Sci 113:662–7. https://doi.org/10.1073/pnas.1514717113.

    CAS  Article  PubMed  Google Scholar 

  58. Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, Saros JE. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18:376–89.

    Google Scholar 

  59. Soranno P, Cheruvelil K. 2017. LAGOS-NE-GEO v1.05: a module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes: 1925–2013.

  60. Soranno P, Cheruvelil K. 2019. LAGOS-NE-LIMNO v 1.087.3: a module for LAGOS-NE, a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes: 1925–2013.

  61. Soranno PA, Bacon LC, Beauchene M, Bednar KE, Bissell EG, Boudreau CK, Boyer MG, Bremigan MT, Carpenter SR, Carr JW, Cheruvelil KS, Christel ST, Claucherty M, Collins SM, Conroy JD, Downing JA, Dukett J, Fergus CE, Filstrup CT, Funk C, Gonzalez MJ, Green LT, Gries C, Halfman JD, Hamilton SK, Hanson PC, Henry EN, Herron EM, Hockings C, Jackson JR, Jacobson-Hedin K, Janus LL, Jones WW, Jones JR, Keson CM, King KBS, Kishbaugh SA, Lapierre JF, Lathrop B, Latimore JA, Lee Y, Lottig NR, Lynch JA, Matthews LJ, McDowell WH, Moore KEB, Neff BP, Nelson SJ, Oliver SK, Pace ML, Pierson DC, Poisson AC, Pollard AI, Post DM, Reyes PO, Rosenberry DO, Roy KM, Rudstam LG, Sarnelle O, Schuldt NJ, Scott CE, Skaff NK, Smith NJ, Spinelli NR, Stachelek JJ, Stanley EH, Stoddard JL, Stopyak SB, Stow CA, Tallant JM, Tan PN, Thorpe AP, Vanni MJ, Wagner T, Watkins G, Weathers KC, Webster KE, White JD, Wilmes MK, Yuan S. 2017. LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes. Gigascience 6:1–22.

    PubMed  PubMed Central  Google Scholar 

  62. Soranno PA, Wagner T, Collins SM, Lapierre J, Lottig NR, Oliver SK. 2019. Spatial and temporal variation of ecosystem properties at macroscales. Ecol Lett 22:1587–98. https://doi.org/10.1111/ele.13346.

    Article  PubMed  Google Scholar 

  63. Stachelek J, Oliver S. 2019. LAGOSNE: interface to the lake multi-scaled Geospatial and Temporal Database.

  64. Stanley EH, Collins SM, Lottig NR, Oliver SK, Webster KE, Cheruvelil KS, Soranno PA. 2019. Biases in lake water quality sampling and implications for macroscale research. Limnol Oceanogr 64:1572–85.

    CAS  Google Scholar 

  65. Stockwell JD, Doubek JP, Adrian R, Anneville O, Carey CC, Carvalho L, De Senerpont Domis LN, Dur G, Frassl MA, Grossart H-P, Ibelings BW, Lajeunesse MJ, Lewandowska AM, Llames ME, Matsuzaki S-IS, Nodine ER, Nõges P, Patil VP, Pomati F, Rinke K, Rudstam LG, Rusak JA, Salmaso N, Seltmann CT, Straile D, Thackeray SJ, Thiery W, Urrutia-Cordero P, Venail P, Verburg P, Woolway RI, Zohary T, Andersen MR, Bhattacharya R, Hejzlar J, Janatian N, Kpodonu ATNK, Williamson TJ, Wilson HL. 2020. Storm impacts on phytoplankton community dynamics in lakes. Glob Chang Biol 8:1–27. https://doi.org/10.1111/gcb.15033.

    Article  Google Scholar 

  66. Tanentzap AJ, Kielstra BW, Wilkinson GM, Berggren M, Craig N, Del Giorgio PA, Grey J, Gunn JM, Jones SE, Karlsson J, Solomon CT, Pace ML. 2017. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Sci Adv 3:1–11.

    Google Scholar 

  67. Thrane J-E, Hessen DO, Andersen T. 2014. The absorption of light in lakes: negative impacts of dissolved organic carbon on primary production. Ecosystems 17:1040–52.

    CAS  Google Scholar 

  68. Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78.

    Google Scholar 

  69. Tranvik LJ, Cole JJ, Prairie YT. 2018. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol Oceanogr Lett 3:41–8.

    Google Scholar 

  70. Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, Leigh McCallister S, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, Von Wachenfeldt E, Weyhenmeyer GA. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–314.

    CAS  Google Scholar 

  71. United States Geologic Survey. USGS EROS Archive-AVHRR Normalized Difference Vegetation Index (NDVI) composites. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-avhrr-normalized-difference-vegetation-index-ndvi-composites?qt-science_center_objects=0#qt-science_center_objects. Last Accessed 29/10/2019.

  72. Vasseur DA, Gaedke U. 2007. Spectral analysis unmasks synchronous and compensatory dynamics in plankton communities. Ecology 88:2058–71.

    PubMed  Google Scholar 

  73. Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A. 2006. Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res Atmos 111:1–12.

    Google Scholar 

  74. Walter JA, Fleck R, Pace ML, Wilkinson GM. 2020. Scaling relationships between catchment area and lake surface area. Aquat Sci 82:47.

    CAS  Google Scholar 

  75. Walter JA, Sheppard LW, Anderson TL, Kastens JH, Bjørnstad ON, Liebhold AM, Reuman DC. 2017. The geography of spatial synchrony. Ecol Lett 20:801–14.

    PubMed  Google Scholar 

  76. Walter JA, Sheppard LW, Venugopal PD, Reuman DC, Dively GP, Tooker JF, Johnson DM. 2019. Weather and regional crop composition variation drive spatial synchrony of lepidopteran agricultural pests. Ecol Entomol 45:573–82.

    Google Scholar 

  77. Wardlow BD, Kastens JH, Egbert SL. 2006. Using USDA crop progress data and MODIS time-series NDVI for regional-scale evaluation of greenup onset date. Photogramm Eng Remote Sens 72:1225–34.

    Google Scholar 

  78. Wettstein JJ, Littell JS, Wallace JM, Gedalof Z. 2011. Coherent region-, species-, and frequency-dependent local climate signals in Northern hemisphere tree-ring widths. J Clim 24:5998–6012.

    Google Scholar 

  79. Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C. 2013. Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshw Biol 58:2037–49.

    Google Scholar 

  80. Wilkinson GM, Walter JA, Fleck R, Pace ML. 2020. Beyond the trends: the need to understand multi-annual dynamics in aquatic ecosystems. Limnol Oceanogr Lett.

  81. Wood SN. 2006. Generalized additive models: an introduction with R. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  82. Wood SN. 2008. Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc B Stat Methodol 70:495–518.

    Google Scholar 

  83. Yu F, Price KP, Ellis J, Kastens D. 2004. Satellite observations of the seasonal vegetation growth in Central Asia: 1982–1990. Photogramm Eng Remote Sens 70:461–9.

    Google Scholar 

  84. Zhang X, Freidl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Heute A. 2003. Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–5.

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grants OAC-1839024 and OAC-1839011. JAW was also supported by a NatureNet Science Fellowship. Two anonymous reviews provided helpful and insightful comments on this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Walter.

Additional information

Author Contributions

JAW, MLP, and GMW conceived the study. RF prepared lake datasets and JHK produced NDVI datasets. JAW performed analyses and drafted the manuscript. All authors contributed to manuscript edits.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8020 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walter, J.A., Fleck, R., Kastens, J.H. et al. Temporal Coherence Between Lake and Landscape Primary Productivity. Ecosystems 24, 502–515 (2021). https://doi.org/10.1007/s10021-020-00531-6

Download citation

Keywords

  • Synchrony
  • Compensation
  • Chlorophyll-a
  • NDVI
  • Resource subsidies
  • Hydrologic connectivity