Skip to main content

Advertisement

Log in

Effects of Grazing, Wind Erosion, and Dust Deposition on Plant Community Composition and Structure in a Temperate Steppe

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Grazing can affect plant community composition and structure directly by foraging and indirectly by increasing wind erosion and dust storms and subsequently influence ecosystem functioning and ecological services. However, the combined effects of grazing, wind erosion, and dust deposition have not been explored. As part of a 7-year (2010–2016) field manipulative experiment, this study was conducted to examine the impacts of grazing and simulated aeolian processes (wind erosion and dust deposition) on plant community cover and species richness in a temperate steppe on the Mongolian Plateau, China. Grazing decreased total cover by 4.2%, particularly the cover of tall-stature plants (> 20 cm in height), but resulted in 9.1% greater species richness. Wind erosion also reduced total cover by 17.0% primarily via suppressing short-stature plants associated with soil nitrogen loss, but had no effect on species richness. Dust deposition enhanced total cover by 5.7%, but resulted in a 7.3% decrease in species richness by driving some of the short-stature plant species to extinction. Both wind erosion and dust deposition showed additive effects with grazing on vegetation cover and species richness, though no detectable interaction between aeolian processes and grazing could be detected due to our methodological constraints. The changes in gross ecosystem productivity, ecosystem respiration, and net ecosystem productivity under the wind erosion and dust deposition treatments were positively related to aeolian process-induced changes in vegetation cover and species richness, highlighting the important roles of plant community shifts in regulating ecosystem carbon cycling. Our findings suggest that plant traits (for example, canopy height) and soil nutrients may be the key for understanding plant community responses to grassland management and natural hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

The data supporting our results in this manuscript were archived in figshare (https://doi.org/10.6084/m9.figshare.12480077).

References

  • Alvarez LJ, Epstein HE, Li J, Okin GS. 2012. Aeolian process effects on vegetation communities in an arid grassland ecosystem. Ecol Evol 2:809–21.

    PubMed  PubMed Central  Google Scholar 

  • Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261–99.

    Google Scholar 

  • Aubault H, Webb NP, Stong CL, McTainsh GH, Leys JF, Scanlan JC. 2015. Grazing impacts on the susceptibility of rangelands to wind erosion: the effects of stocking rate, stocking strategy and land condition. Aeolian Res 17:89–99.

    Google Scholar 

  • Barger NN, Ojima DS, Belnap J, Wang S, Wang Y, Chen Z. 2004. Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian grassland. J Range Manag 57:613–19.

    Google Scholar 

  • Belnap J, Reynolds RL, Reheis MC, Phillips SL, Urban FE, Goldstein HL. 2009. Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA. Aeolian Res 1:27–43.

    Google Scholar 

  • Blüthgen N, Dormann CF, Prati D, Klaus VH, Kleinebecker T, Hölzel N, Alt F, Boch S, Gockel S, Hemp A, Müller J, Nieschulze J, Renner SC, Schöning I, Schumacher U, Socher SA, Wells K, Birkhofer K, Buscot F, Oelmann Y, Rothenwöhrer C, Scherber C, Tscharntke T, Weiner CN, Fischer M, Kalko EKV, Linsenmair KE, Schulze E-D, Weisser WW. 2012. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl Ecol 13:207–20.

    Google Scholar 

  • Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, Adler PB, Alberti J, Anderson TM, Bakker JD, Biederman L, Blumenthal D, Brown CS, Brudvig LA, Buckley YM, Cadotte M, Chu C, Cleland EE, Crawley MJ, Daleo P, Damschen EI, Davies KF, DeCrappeo NM, Du G, Firn J, Hautier Y, Heckman RW, Hector A, HilleRisLambers J, Iribarne O, Klein JA, Knops JMH, La Pierre KJ, Leakey ADB, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Mortensen B, O’Halloran LR, Orrock JL, Pascual J, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Williams RJ, Wragg PD, Wright JP, Yang LH. 2014. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508:517–20.

    CAS  PubMed  Google Scholar 

  • Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R. 2001. A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38:253–67.

    Google Scholar 

  • Chen S, Bai Y, Lin G, Liang Y, Han X. 2005. Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica 43:559–65.

    Google Scholar 

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–7.

    CAS  PubMed  Google Scholar 

  • Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z. 2015. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Glob Change Biol 21:388–95.

    Google Scholar 

  • Eldridge DJ, Leys JF. 2003. Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53:457–66.

    Google Scholar 

  • Eldridge DJ, Poore AG, Ruiz-Colmenero M, Letnic M, Soliveres S. 2016. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol Appl 26:1273–83.

    PubMed  Google Scholar 

  • Evju M, Austrheim G, Halvorsen R, Mysterud A. 2009. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem. Oecologia 161:77–85.

    PubMed  Google Scholar 

  • Field JP, Belnap J, Breshears DD, Neff JC, Okin GS, Whicker JJ, Painter TH, Ravi S, Reheis MC, Reynolds RL. 2010. The ecology of dust. Front Ecol Environ 8:423–30.

    Google Scholar 

  • Funk JL, Vitousek PM. 2007. Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–81.

    CAS  PubMed  Google Scholar 

  • Gwynne MD, Bell RHV. 1968. Selection of vegetation components by grazing ungulates in the Serengeti National Park. Nature 220:390–3.

    CAS  PubMed  Google Scholar 

  • Harpole WS, Sullivan LL, Lind EM, Firn J, Adler PB, Borer ET, Chase J, Fay PA, Hautier Y, Hillebrand H, MacDougall AS, Seabloom EW, Williams R, Bakker JD, Cadotte MW, Chaneton EJ, Chu C, Cleland EE, D’Antonio C, Davies KF, Gruner DS, Hagenah N, Kirkman K, Knops JMH, La Pierre KJ, McCulley RL, Moore JL, Morgan JW, Prober SM, Risch AC, Schuetz M, Stevens CJ, Wragg PD. 2016. Addition of multiple limiting resources reduces grassland diversity. Nature 537:93–6.

    CAS  PubMed  Google Scholar 

  • Harris AT, Asner GP, Miller ME. 2003. Changes in vegetation structure after long-term grazing in pinyon–juniper ecosystems: integrating imaging spectroscopy and field studies. Ecosystems 6:368–83.

    Google Scholar 

  • Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–8.

    CAS  PubMed  Google Scholar 

  • Hoffmann C, Funk R, Wieland R, Li Y, Sommer M. 2008a. Effects of grazing and topography on dust flux and deposition in the Xilingele grassland, Inner Mongolia. J Arid Environ 72:792–807.

    Google Scholar 

  • Hoffmann C, Funk R, Li Y, Sommer M. 2008b. Effect of grazing on wind driven carbon and nitrogen ratios in the grasslands of Inner Mongolia. Catena 75:182–90.

    CAS  Google Scholar 

  • Hoffmann C, Funk R, Reiche M, Li Y. 2011. Assessment of extreme wind erosion and its impacts in Inner Mongolia, China. Aeolian Res 3:343–51.

    Google Scholar 

  • Huntly NJ. 1991. Herbivores and the dynamics of communities and ecosystems. Annu Rev Ecol Evol Syst 22:477–503.

    Google Scholar 

  • Jamsranjav C, Reid RS, Fernández-Giménez ME, Tsevlee A, Yadamsuren B, Heiner M. 2018. Applying a dryland degradation framework for rangelands: the case of Mongolia. Ecol Appl 28:622–42.

    CAS  PubMed  Google Scholar 

  • Köhler M, Hiller G, Tischew S. 2016. Year-round horse grazing supports typical vascular plant species, orchids and rare bird communities in a dry calcareous grassland. Agric Ecosyst Environ 234:48–57.

    Google Scholar 

  • Lawrence CR, Reynolds RL, Ketterer ME, Neff JC. 2013. Aeolian controls of soil geochemistry and weathering fluxes in high-elevation ecosystems of the Rocky Mountains, Colorado. Geochim Cosmochim Acta 107:27–46.

    CAS  Google Scholar 

  • Lei L, Zhang K, Zhang X, Wang Y, Xia J, Piao S, Hui D, Zhong M, Ru J, Zhou Z, Song H, Yang Z, Wang D, Miao Y, Yang F, Liu B, Zhang A, Yu M, Liu X, Song Y, Zhu L, Wan S. 2019. Plant feedback aggravates soil organic carbon loss associated with wind erosion in northwest China. JGR Biogeosci 124:825–39.

    CAS  Google Scholar 

  • Li J, Li Z, Ren J. 2005. Effect of grazing intensity on clonal morphological plasticity and biomass allocation patterns of Artemisia frigida and Potentilla acaulis in the Inner Mongolia steppe. N Z J Agric Res 48:57–61.

    Google Scholar 

  • Li J, Okin GS, Alvarez L, Epstein H. 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 85:317–32.

    Google Scholar 

  • Li C, Hao X, Zhao M, Han G, Willms WD. 2008a. Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia. Agric Ecosyst Environ 128:109–16.

    Google Scholar 

  • Li J, Okin GS, Alvarez L, Epstein H. 2008b. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry 88:73–88.

    CAS  Google Scholar 

  • Li Y, Wang W, Liu Z, Jiang S. 2008c. Grazing gradient versus restoration succession of Leymus chinensis (Trin.) Tzvel. Grassland in Inner Mongolia. Restor Ecol 16:572–83.

    Google Scholar 

  • Li W, Cao W, Wang J, Li X, Xu C, Shi S. 2017. Effects of grazing regime on vegetation structure, productivity, soil quality, carbon and nitrogen storage of alpine meadow on the Qinghai–Tibetan Plateau. Ecol Eng 98:123–33.

    Google Scholar 

  • Li P, Liu L, Wang J, Wang Z, Wang X, Bai Y, Chen S. 2018. Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land Degrad Dev 29:3469–78.

    Google Scholar 

  • Lin Y, Hong M, Han G, Zhao M, Bai Y, Chang SX. 2010. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe. Agric Ecosyst Environ 138:282–92.

    Google Scholar 

  • Liu J, Feng C, Wang D, Wang L, Wilsey BJ, Zhong Z. 2015. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J Appl Ecol 52:1053–62.

    Google Scholar 

  • Ludwig JA, Bartley R, Hawdon AA, Abbott BN, McJannet D. 2007. Patch configuration non-linearly affects sediment loss across scales in a grazed catchment in north-east Australia. Ecosystems 10:839–45.

    Google Scholar 

  • Ma X, Zhao C, Gao Y, Liu B, Wang T, Yuan T, Hale L, van Nostrand JD, Wan S, Zhou J, Yang Y. 2017. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition. Mol Ecol 26:4186–96.

    CAS  PubMed  Google Scholar 

  • Ma X, Zhang Q, Zheng M, Gao Y, Yuan T, Hale L, Yang Y. 2019. Microbial functional traits are sensitive indicators of mild disturbance by lamb grazing. ISME J 13:1370–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Bran D, Conceição AA, Cabrera O, Chaieb M, Derak M, Eldridge DJ, Espinosa CI, Florentino A, Gaitán J, Gatica MG, Ghiloufi W, Gómez-González S, Gutiérrez JR, Hernández RM, Huang X, Huber-Sannwald E, Jankju M, Miriti M, Monerris J, Mau RL, Morici E, Naseri K, Ospina A, Polo V, Prina A, Pucheta E, Ramírez-Collantes DA, Romão R, Tighe M, Torres-Díaz C, Val J, Veiga JP, Wang D, Zaady E. 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335:214–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masunga GS, Moe SR, Pelekekae B. 2013. Fire and grazing change herbaceous species composition and reduce beta diversity in the Kalahari sand system. Ecosystems 16:252–68.

    CAS  Google Scholar 

  • Meng Z, Dang X, Gao Y, Ren X, Ding Y, Wang M. 2018. Interactive effects of wind speed, vegetation coverage and soil moisture in controlling wind erosion in a temperate desert steppe, Inner Mongolia of China. J Arid Land 10:534–47.

    Google Scholar 

  • Monfreda C, Ramankutty N, Hertel TW, Eds. 2009. Economic analysis of land use in global climate change policy. Abingdon: Routledge. pp 33–48.

    Google Scholar 

  • Munkhtsetseg E, Shinoda M, Ishizuka M, Mikami M, Kimura R, Nikolich G. 2017. Anthropogenic dust emissions due to livestock trampling in a Mongolian temperate grassland. Atmos Chem Phys 17:11389–401.

    CAS  Google Scholar 

  • Musavi T, Migliavacca M, Reichstein M, Kattge J, Wirth C, Black TA, Janssens I, Knohl A, Loustau D, Roupsard O, Varlagin A, Rambal S, Cescatti A, Gianelle D, Kondo H, Tamrakar R, Mahecha MD. 2017. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat Ecol Evol 1:0048. https://doi.org/10.1038/s41559-016-0048.

    Article  Google Scholar 

  • Nauman TW, Duniway MC, Webb NP, Belnap J. 2018. Elevated aeolian sediment transport on the Colorado Plateau, USA: the role of grazing, vehicle disturbance, and increasing aridity. Earth Surf Process Landf 43:2897–914.

    Google Scholar 

  • Neff JC, Reynolds RL, Belnap J, Lamothe P. 2005. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol Appl 15:87–95.

    Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL. 2008. Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–95.

    CAS  Google Scholar 

  • Niu K, He J, Zhang S, Lechowicz MJ. 2016. Grazing increases functional richness but not functional divergence in Tibetan alpine meadow plant communities. Biodivers Conserv 25:2441–52.

    Google Scholar 

  • Okin GS, Murray B, Schlesinger WH. 2001. Degradation of sandy arid shrubland environments: observations, process modelling, and management implications. J Arid Environ 47:123–44.

    Google Scholar 

  • Okin GS, Gillette DA, Herrick JE. 2006. Multi-scale controls on and consequences of aeolian processes in landscape change in arid and semi-arid environments. J Arid Environ 65:253–75.

    Google Scholar 

  • Qian J, Wang Z, Liu Z, Busso CA. 2017. Belowground bud bank responses to grazing intensity in the Inner-Mongolia steppe, China. Land Degrad Dev 28:822–32.

    Google Scholar 

  • Ren H, Eviner VT, Gui W, Wilson GW, Cobb AB, Yang G, Zhang Y, Hu S, Bai Y. 2018. Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland. Funct Ecol 32:2790–800.

    Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F. 2001. Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci U S A 98:7123–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Safford HD, Harrison SP. 2001. Grazing and substrate interact to affect native vs. exotic diversity in roadside grasslands. Ecol Appl 11:1112–22.

    Google Scholar 

  • Soderberg K, Compton JS. 2007. Dust as a nutrient source for Fynbos ecosystems, South Africa. Ecosystems 10:550–61.

    CAS  Google Scholar 

  • Soil Survey Staff. 1999. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook, vol. 436, pp 329–88.

  • Song J, Wan S, Piao S, Hui D, Hovenden MJ, Ciais P, Liu Y, Liu Y, Zhong M, Zheng M, Ma G, Zhou Z, Ru J. 2019. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecol Lett 22:458–68.

    PubMed  Google Scholar 

  • Sørensen LI, Mikola J, Kytöviita M-M, Olofsson J. 2009. Trampling and spatial heterogeneity explain decomposer abundances in a sub-arctic grassland subjected to simulated reindeer grazing. Ecosystems 12:830–42.

    Google Scholar 

  • Su R, Cheng J, Chen D, Bai Y, Jin H, Chao L, Wang Z, Li J. 2017. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China. Sci Rep 7:40. https://doi.org/10.1038/s41598-017-00105-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabeni S, Garibotti IA, Pissolito C, Aranibar JN. 2014. Grazing effects on biological soil crusts and their interaction with shrubs and grasses in an arid rangeland. J Veg Sci 25:1417–25.

    Google Scholar 

  • van Klink R, Schrama M, Nolte S, Bakker JP, WallisDeVries MF, Berg MP. 2015. Defoliation and soil compaction jointly drive large-herbivore grazing effects on plants and soil arthropods on clay soil. Ecosystems 18:671–85.

    Google Scholar 

  • Vitousek P. 1982. Nutrient cycling and nutrient use efficiency. Am Nat 119:553–72.

    Google Scholar 

  • Wang Z, Jiao S, Han G, Zhao M, Ding H, Zhang X, Wang X, Ayers EL, Willms WD, Havsatad K, Lata A, Liu Y. 2014. Effects of stocking rate on the variability of peak standing crop in a desert steppe of Eurasia grassland. Environ Manag 53:266–73.

    Google Scholar 

  • Wang Z, Han G, Hao X, Zhao M, Ding H, Li Z, Wang J, Hamilton A, Liu Y, Lata A, Hexige B. 2017. Effect of manipulating animal stocking rate on the carbon storage capacity in a degraded desert steppe. Ecol Res 32:1001–9.

    CAS  Google Scholar 

  • Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C. 2019. Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proc Natl Acad Sci U S A 116:6187–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Adamson JK, Ostle NJ. 2007. Long-term consequences of grazing and burning on northern peatland carbon dynamics. Ecosystems 10:1069–83.

    CAS  Google Scholar 

  • Wedin DA, Tilman D. 1996. Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–3.

    CAS  PubMed  Google Scholar 

  • Yang H, Li Y, Wu M, Zhang Z, Li L, Wan S. 2011. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Change Biol 17:2936–44.

    Google Scholar 

  • Yang X, Shen Y, Liu N, Wilson GWT, Cobb AB, Zhang Y. 2018. Defoliation and arbuscular mycorrhizal fungi shape plant communities in overgrazed semiarid grasslands. Ecology 99:1847–56.

    PubMed  Google Scholar 

  • Ylänne H, Stark S, Tolvanen A. 2015. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra. Glob Change Biol 21:3696–711.

    Google Scholar 

  • Zhanbula, Chen J, Zhang H, Chao L, Burenjiya. 1999. The characteristics ecological and geographical distribution of Artemisia frigida. J Inner Mongolia Inst Agric Anim Husbandry 20:1–7.

  • Zhao H, Zhao X, Zhou R, Zhang T, Drake S. 2005. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J Arid Environ 62:309–19.

    Google Scholar 

  • Zhao W, Chen S, Han X, Lin G. 2009. Effects of long-term grazing on the morphological and functional traits of Leymus chinensis in the semiarid grassland of Inner Mongolia, China. Ecol Res 24:99–108.

    Google Scholar 

  • Zhou Z, Gan Z, Shangguan Z, Dong Z. 2010. Effects of grazing on soil physical properties and soil erodibility in semiarid grassland of the Northern Loess Plateau (China). Catena 82:87–91.

    Google Scholar 

  • Zhu H, Wang D, Wang L, Bai Y, Fang J, Liu J. 2012. The effects of large herbivore grazing on meadow steppe plant and insect diversity. J Appl Ecol 49:1075–83.

    Google Scholar 

Download references

Acknowledgements

The authors thank Fanglong Su and Jiajia Wang for their help in the field experiments, and Yue Du for her constructive comments and suggestions in improving the manuscript. This work was financially supported by National Natural Science Foundation of China (31830012). DH is supported by the National Science Foundation projects. LJ is supported by the US National Science Foundation (DEB-1856318 and CBET-1833988).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqiang Wan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Song, J., Ru, J. et al. Effects of Grazing, Wind Erosion, and Dust Deposition on Plant Community Composition and Structure in a Temperate Steppe. Ecosystems 24, 403–420 (2021). https://doi.org/10.1007/s10021-020-00526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00526-3

Keywords

Navigation