Skip to main content

Fagus sylvatica L. Peripheral Populations in the Mediterranean Iberian Peninsula: Climatic or Anthropic Relicts?

Abstract

European beech is a temperate species with peripheral populations in the Mediterranean mountains. These Mediterranean beech forests have often been interpreted as climatic relicts. However, the use of this term does not always seem appropriate because their recent post-glacial expansion in the Iberian Peninsula makes it difficult to disentangle the effects of climate from those associated with land use. Moreover, the observed recovery of Mediterranean beech forests after land-use abandonment is not what might be expected of a climatic relict. Our objective is to clarify this issue by studying one of these Mediterranean “relict” populations located at the south-western margin of this species (Iberian Central Range), discriminating between subpopulations with dissimilar land-use legacies. Differences between the climatic range of this population and the rest of the European beech forests were explored. Historic and recent shifts in the species distribution area were studied by reviewing paleorecords from the literature and contrasting historical and recent cartography. Field data on population structure and demography were also examined. The climatic analyses do not point to climatic marginality of the peripheral population studied. Furthermore, the results revealed no evidence of reduction in area or confinement over recent decades. Contrary to what is expected for climatic relict species under current climate, beech is expanding in the studied mountain following the abandonment of traditional land uses, particularly since the middle of the twentieth century CE. Our results do not support the concept of a climatic relict but rather, they point to the importance of anthropogenic legacies to explain the distribution area, population dynamics and current conservation status of Mediterranean beech forests.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Abel-Schaad D, Pulido F, López-Sáez JA, Alba Sánchez F, Nieto Lugilde D, Franco Múgica F, Pérez Díaz S, Ruiz Zapata MB, Gil García MJ, Dorado Valiño M. 2014. Persistence of tree relicts in the Spanish Central System through the Holocene. Lazaroa 35:107–31.

    Google Scholar 

  2. Alía-Miranda R, García del Barrio JM, Iglesias-Sauce S, Mancha-Núlez JA, de Miguel y del Ángel J, Nicolás-Peragón JL, Pérez-Martín F, Sánchez de Ron D. 2009. Regiones de Procedencia de especies forestales en España. Fagus sylvatica. pp. 363. Organismo Autónomo Parques Nacionales. Madrid.

  3. Álvarez-Herranz R, Schwendtner-García O, Bautista-Carrascosa I, Herranz-Pastor O. 2012a. Diagnóstico y propuesta de gestión para la adaptación al cambio climático en el hayedo de Tejera Negra (Guadalajara). Technical Report. Castilla la Mancha. GENEA.

  4. Álvarez-Herranz R, Schwendtner-García O, Bautista-Carrascosa I, Herranz-Pastor O. 2012b. Proyecto de mejora silvícola en el Hayedo de Tejera Negra (Guadalajara). Technical Report. Castilla la Mancha. GENEA.

  5. Arranz JA, Allué M. 1993. Enumeración, descripción y cartografía de los enclaves de Fagus sylvatica L. en la vertiente segoviana del macizo de Ayllón. Ecología 7:149–77.

    Google Scholar 

  6. Arranz JA, Allué M. 1995. Una propuesta para la ordenación del hayedo de la Pedrosa (Río Frío de Riaza, Segovia). Cuadernos de la Sociedad Española de Ciencias Forestales 1:337–51.

    Google Scholar 

  7. Azuara J, Lebreton V, Peyron O, Mazier F, Combourieu-Nebout N. 2018. The Holocene history of low altitude Mediterranean Fagus sylvatica forests in southern France. J Veg Sci 29:438–49. https://doi.org/10.1111/jvs.12658.

    Article  Google Scholar 

  8. Barbeta A, Peñuelas J, Ogaya R, Jump AS. 2011. Reduced tree health and seedling production in fragmented Fagus sylvatica forest patches in the Montseny Mountains (NE Spain). For Ecol Manag 261:2029–37.

    Google Scholar 

  9. Benito-Garzón M, Sánchez de Dios R, Sainz Ollero H. 2008. Effects of climate change on the distribution of Iberian forests. Appl Veg Sci 11:169–78.

    Google Scholar 

  10. Bonanomi G, Rita A, Allevato E, Cesarano G, Saulino L, di Pasquale G, Allegreza M, Pesaresi S, Borghetti M, Rossi S, Saracino A. 2018. Anthropogenic and environmental factors affect the tree line position of Fagus sylvatica along the Apennines (Italy). J Biogeogr 45(11):2595–608. https://doi.org/10.1111/jbi.13408.

    Article  Google Scholar 

  11. Castel C. 1883. Montes de la provincia de Guadalajara. Rev Montes 151:194–196; 152:217–225; 154:285–293; 155:301–307

  12. Cavin L, Jump AS. 2017. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob Change Biol 23:362–79. https://doi.org/10.1111/gcb.13366.

    Article  Google Scholar 

  13. Crawley, M.J. 2013. The R book. pp. 975. UK: John Wiley & Sons, Ltd.

  14. Cullotta S, la Placa G, Maetzke FG. 2013. Effects of traditional coppice practices and microsite conditions on tree health in a European beech forest at its southernmost range. iForest 9:673–681. https://doi.org/10.3832/ifor1603-008.

  15. Day RW, Quinn GP. 1989. Comparisons of treatments after an analysis of variance in ecology. Ecol Monogr 59(4):433–63.

    Google Scholar 

  16. de Lafontaine G, Amasifuen Guerra CA, Ducousso A, Petit RJ. 2014. Cryptic no more: soil macrofossils uncover Pleistocene forest microrefugia within a periglacial desert. New Phytol 204:715–29.

    PubMed  Google Scholar 

  17. de Madariaga JA. 1909. El hayedo más meridional. Rev Montes 788:769–75.

    Google Scholar 

  18. Delhon C, Thiébault S. 2005. The migration of beech (Fagus sylvatica L.) up the Rhone: the Mediterranean history of a “mountain” species. Veg Hist Archaeobot 14:119–32.

    Google Scholar 

  19. del Río M, Condés S, Pretzsch H. 2014. Analyzing size-symmetric vs. size-asymmetric and intra-vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. For Ecol Manag 325:90–8.

    Google Scholar 

  20. Dieler J, Pretzsch H. 2013. Morphological plasticity of European beech (Fagus sylvatica L.) in pure and mixed-species stands. For Ecol Manag 295:97–108.

    Google Scholar 

  21. DOCM. 2011. Ley 5/2011, de 10 de marzo, de Declaración del Parque Natural de la Sierra Norte de Guadalajara. DOCM nº 56, de Marzo de 2011).

  22. Dorado-Liñán I, Cañellas I, Valbuena-Carabaña M, Gil L, Gea-Izquierdo G. 2017. Coexistence in the Mediterranean-Temperate transitional border: multi-century dynamics of a mixed old-growth forest under global change. Dendrochronologia 44:48–57.

    Google Scholar 

  23. Dorado-Liñán I, Piovesan G, Martínez-Sancho E, Gea-Izquierdo G, Zang C, Cañellas I, Castagneri D, Di Filippo A, Gutiérrez E, Ewald J, Fernández-de-Uña L, Hornstein D, Jantsch MC, Levanič T, Mellert KH, Vacchiano G, Zlatanov T, Menzel A. 2019. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob Change Biol 25(4):1296–314.

    Google Scholar 

  24. European Environment Agency Boundaries. 2016. European biogeographic map. DG Environment, European Environment Agency, Brussels, Belgium. http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3. Accessed 8 May 2018.

  25. Ellenberg H. 1963. Vegetation Mitteleuropas mit den Alpen, 1st edn. Stuttgart: Eugen Ulmer

  26. Ellenberg H. 1988. Vegetation ecology of Central Europe. Cambridge: Cambridge University Press.

    Google Scholar 

  27. Ellstrand NC, Elam DR. 1993. Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–42.

    Google Scholar 

  28. EUFORGEN. 2009. Distribution Map of European Beech. www.euforgen.org. Accessed 7 May 2018.

  29. Fang J, Lechovicz MJ. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J Biogeogr 33:1804–19.

    Google Scholar 

  30. Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfacesfor global land areas. Int J Climatol 37:4302–15. https://doi.org/10.1002/joc.5086.

    Article  Google Scholar 

  31. Fotelli MN, Nahm M, Radoglou K, Rennenberg H, Halyvopoulos G, Matzarakis A. 2009. Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its SFE distribution limit in Europe. For Ecol Manag 257:1157–64.

    Google Scholar 

  32. Franco Múgica F, García Antón M, Maldonado Ruiz J, Morla Juaristi C, Sainz Ollero H. 2001. Evolución de la vegetación en el sector septentrional del Macizo de Ayllón (Sistema Central). Análisis polínico de la turbera de Pelagallinas. Anales del Jardin Botánico de Madrid 59(1):113–124.

  33. García-Antón M, Génova M, Postigo-Mijarra JM, García-Álvarez S, Morla C, García-Amorena I. 2019. Palaeobotanical history of the Ayllón Holocene forests (Central System). Spain: Vegetation History and Archaeobotany. in press

    Google Scholar 

  34. Giesecke T, Hickler T, Kunkel T, Sykes MT, Bradshaw RHW. 2007. Towards an understanding of the Holocene distribution of Fagus sylvatica L. J Biogeogr 34:118–31.

    Google Scholar 

  35. Gil L, Alonso J, Aranda, I., González I, Gonzalo, J, López U, Millerón M, Nanos N, Perea R, Rodriguez J, Valbuena M. 2010. El Hayedo de Montejo. Una Gestión Sostenible. Consejería de Medio Ambiente; Vivienda y Ordenación del Territorio. Comunidad de Madrid, Spain.

  36. Gil-García MJ, Tomas Las Heras R, Ruiz-Zapata B. 1993. Acción antrópica y reconstrucción de la vegetación durante el Holoceno reciente en el Hayedo de Montejo (Madrid). Nova Acta Científica Compostelana (Bioloxia) 4:49–57.

    Google Scholar 

  37. Gómez C, Alejandro P, Aulló-Maestro I, Hernández L, Sánchez de Dios R, Sainz-Ollero H, Velázquez C, Montes F. 2019. Presence of European beech in its Spanish Southernmost limit characterized with Landsat intra-annual time series. Earth Obs Adv Changing World 1:41–4. https://aitonline.files.wordpress.com/2019/07/earth-observation-advancements-in-a-changing-world.pdf.

  38. Hacket-Pain AJ, Cavin L, Friend DA, Jump AS. 2016. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur J For Res 135:897–909.

    Google Scholar 

  39. Hampe A, Petit RJ. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–7.

    PubMed  Google Scholar 

  40. Hampe A, Jump AS. 2011. Climate relicts: past, present, future. Annu Rev Ecol Evol Syst 42:313–33.

    Google Scholar 

  41. Hernández Bermejo E, Sainz Ollero H. 1978. Ecología de los hayedos meridionales ibéricos: el macizo de Ayllón. Madrid, Spain: Ministerio de Agricultura.

    Google Scholar 

  42. Herranz JM, Martínez-Sánchez JJ, de las Heras J, Ferrandis P. 1996. Stages of plant succesion in Fagus sylvatica L. and Pinus sylvestris L. forests of Tejera Negra Natural Park (Central Spain), three years after fire. Israel J Plant Sci 44:347–58.

    Google Scholar 

  43. Huston Durrant T, de Rigo D, Candullo G. 2016. Fagus sylvatica in Europe: distribution, habitat, usage and threats. In: San Miguel Ayanz, J, de Rigo, D, Candullo, G, Huston Durrant, T, Mauri, A. Eds. European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg.

  44. Isaaks E, Srivastava R. 1989. Applied geostatistics. New York: Oxford University Press.

    Google Scholar 

  45. Janík D, Král K, Adam D, Hort L, Samonil P, Unar P, Vrska T, McMahon S. 2016. Tree spatial patterns of Fagus sylvatica expansion over 37 years. For Ecol Manag 375:134–45.

    Google Scholar 

  46. Laguna y Villanueva M. 1864. Memoria de reconocimiento de la Sierra de Guadarrama bajo el punto de vista de la repoblación de sus montes. Imprenta Nacional. Madrid.

  47. López-Santalla A, Pardo-Navarro F, Alonso-Náger J, Gil-Sánchez L. 2003. El aprovechamiento tradicional del monte y sus efectos sobre la vegetación en el “Hayedo de Montejo” (Madrid). Cuadernos de la Sociedad Española de Ciencias Forestales 16:109–14.

    Google Scholar 

  48. MA. 1974. Decreto 2868/1974, de 30 de agosto, del Ministerio de Agricultura, por el que se declara Sitio Natural de Interés Nacional el “Hayedo de Montejo de la Sierra”.

  49. MA. 1978. Decreto 3158/1978 de 10 de noviembre por el que se declara el Parque Natural del Hayedo de Tejera Negra (B.O.E, 18 de enero de 1979).

  50. Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap WO, Petit RJ, de Beaulieu JL. 2006. A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221.

    CAS  Google Scholar 

  51. Ministerio de Cultura y Deporte. 2019. Estudio del paisaje cultural de los hayedos primigenios de España declarados por UNESCO Patrimonio de la Humanidad y establecimiento de estrategias para su salvaguarda. Labrit Patrimonio. Madrid. pp 102. http://www.culturaydeporte.gob.es/planes-nacionales/dam/jcr:c4cdd79a-2e96-4c0a-a332-80e705c8995a/hayedos-primigenios.pdf. Accessed 26 Mar 2018.

  52. López-Merino L, López-Sáez JA, Ruiz Zapata MB, Gil-García MJ. 2008. Reconstructing the history of beech (Fagus sylvatica L.) in the North-Western Iberian Range (Spain): from Late-Glacial refugia to the Holocene anthropic-induced forests. Rev Palaeobot Palynol 152:58–65.

    Google Scholar 

  53. López-Sáez JA, Abel-Schaad D, Pérz-Díaz S, Blanco-González A, Alba-Sánchez F, Dorado M, Ruiz-Zapata B, Gil-García MJ, Gómez-González C, Franco-Múgica F. 2014. Vegetation history, climate and human impact in the Spanish Central System over the last 9000 years. Quat Int 353:98–122.

    Google Scholar 

  54. Magri D. 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr 35:450–63.

    Google Scholar 

  55. Martínez del Castillo E, García-Martín A, Longares Aladrén LA, de Luis M. 2015. Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Appl Geogr 62:247–55.

    Google Scholar 

  56. McCullagh P, Nelder JA.2002. Generalized linear models. London New York: Chapman and Hall. 526p.

  57. Mauri A, Strona G, San-Miguel-Ayanz J. 2017. EU-Forest, a high-resolution tree occurrence dataset for Europe. Sci Data 4:160123. https://doi.org/10.1038/sdata.2016.123.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mellert KH, Ewald J, Hornstein D, Dorado-Liñán I, Jantsch M, Taeger S, Zang C, Menzel A, Kölling C. 2016. Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg’s quotient. Eur J For Res 135:137–52.

    Google Scholar 

  59. Morales-Molino C, Tinner W, García-Antón M, Colombaroli D. 2017a. The historical demise of Pinus nigra forests in the Northern Iberian Plateau (south-western Europe). J Ecol 105:634–46.

    Google Scholar 

  60. Morales-Molino C, Colombaroli D, Valbuena-Carabaña M, Tinner W, Salomón RL, Carrión JS, Gil L. 2017b. Land-use history as a major driver for long-term forest dynamics in the Sierra de Guadarrama National Park (central Spain) during the last millennia: implications for forest conservation and management. Glob Planet Change 152:64–75.

    Google Scholar 

  61. Morales-Molino C, Tinner W, Perea R, Carrión JS, Colombaroli D, Valbuena-Carabaña M, Zafra E, Gil L. 2019. Unprecedented herbivory threatens rear-edge populations of Betula in southwestern Eurasia. Ecology 100(11):Article e02833. https://doi.org/10.1002/ecy.2833.

  62. Muñoz-Sobrino C, Ramil-Rego P, Gómez-Orellana L, Ferreiro da Costa J, Díaz-Varela RA. 2009. Climatic and human effects on the post-glacial dynamics of Fagus sylvatica L. in NW Iberia. Plant Ecol 203:317–40.

    Google Scholar 

  63. Ozenda P. 1994. Végétation du continent européen. Paris, France: Delachaux et Niestlé. p 271p.

    Google Scholar 

  64. Pardo F, Gil L. 2005. The impact of traditional land use on woodlands: a case study in the Spanish Central System. J Hist Geogr 31:390–408.

    Google Scholar 

  65. Peñuelas J, Ogaya R, Boada M, Jump AS. 2007. Migration, invasion and decline: changes in recruitment and forest structure in a warming linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–37.

    Google Scholar 

  66. Piovesan, GF, Biondi A, di Filippo A, Alessandrini M, Maugeri M. 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biol 14(6): 1265–1281

  67. QGIS 3.02 Development Team. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Accessed 5 May 2018.

  68. R Development Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org. Accessed Feb 2018.

  69. Ramil-Rego P, Rodríguez Guitián MA, Muñoz-Sobrino C, Gómez-Orellana L. 2000. Some considerations about the postglacial history and recent distribution of Fagus sylvatica in the NW Iberian Peninsula. Folia Geobot 35:241–71.

    Google Scholar 

  70. Robson TM, Rasztovits E, Aphalo PJ, Alia R, Aranda I. 2013. Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin. Agric For Meteorol 180:76–85. https://doi.org/10.1016/j.agrformet.2013.05.008.

    Article  Google Scholar 

  71. Rozas V, Camarero JJ, Sangüesa-Barreda G, Souto M, García-González I. 2015. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric For Meteorol 201:153–64.

    Google Scholar 

  72. Rubio-Cuadrado A, Camarero JJ, del Río M, Sánchez-González M, Ruiz-Peinado R, Bravo-Oviedo A, Gil L, Montes F. 2018a. Drought modifies tree competitiveness in an oak-beech temperate forest. For Ecol Manag 429:7–17.

    Google Scholar 

  73. Rubio-Cuadrado A, Camarero J, Aspizua R, Sánchez-González Gil L, Montes F. 2018b. Abiotic factors modulate post-drought growth resilience of Scots pine plantations and rear-edge Scots pine and oak forests. Dendrochronologia 51:54–65. https://doi.org/10.1016/j.dendro.2018.08.001.

    Article  Google Scholar 

  74. Ruiz-Alonso M, Pérez-Díaz S, López-Sáez JA. 2019. From glacial refugia to current landscape configuration: permanence, expansion and forest management of Fagus sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula). Veg Hist Archaeobot 28:481–96.

    Google Scholar 

  75. Ruiz- Labourdette D, Martínez F, Martín-López B, Montes C, Pineda FD. 2011. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions. Int J Biometeorol 55:285–301.

    PubMed  Google Scholar 

  76. Ruiz-Zapata MB, Carrasco RM, Gil-García MJ, Pedraza J, Razola L, Domínguez-Villar D, Gallardo JL. 2011. Dinámica de la vegetación durante el Holoceno en la Sierra de Gredos (Sistema Central Español). Boletín de la Real Sociedad Española de Historia Natural (Sec. Geología) 105:109–123.

  77. Salomón R, Rodríguez-Calcerrada J, Zafra E, Morales-Molino C, Rodríguez-García A, González-Doncel I, Oleksyn J, Zytkowiak R, López R, Miranda JC, Gil L, Valbuena-Carabaña M. 2016. Unearthing the roots of degradation of Quercus pyrenaica coppices: a root-to-shoot imbalance caused by historical management? For Ecol Manag 363:200–11.

    Google Scholar 

  78. Sánchez de Dios R, Hernández L, Montes F, Sainz-Ollero H, Cañellas I. 2016. Tracking the leading edge of Fagus sylvatica in North-Western Iberia: Holocene migration inertia, forest succession and recent global change. Perspect Plant Ecol Evol Syst 20:11–21.

    Google Scholar 

  79. Sánchez-González M, Cabrera M, Herrera PJ, Vallejo R, Cañellas I, Montes F. 2016. Basal area and diameter distribution estimation using stereoscopic hemispherical images. Photogramm Eng Remote Sens 82:605–16.

    Google Scholar 

  80. Secall J. 1889. Apuntes, noticias y datos de una excursión forestal. Rev Montes 293:159–164; 294:203–210.

  81. Sjölund MJ, Gónzalez-Díaz P, Moreno-Villena JL, Jump AS. 2019. Gene flow at the leading range edge: the long-term consequences of isolation in European Beech (Fagus sylvatica L. Kuhn). J Biogeogr 46(12):2787–99. https://doi.org/10.1111/jbi.13701.

    Article  Google Scholar 

  82. Stojanovic DB, Krzic A, Matovic B, Orlovic S, Duputie A, Djurdjevic V, Galic Z, Stojnic S. 2013. Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: an example from southeast Europe. Agric For Meteorol 176:94–103.

    Google Scholar 

  83. Takhtajan A. 1978. Floristic regions of the world. Moscow: Soviet Sciences Press. (in Russian)

    Google Scholar 

  84. Tegel W, Seim A, Hakelberg D, Hoffmann S, Panev M, Westphal T, Büntgen U. 2014. A recent growth increase of European beech (Fagus sylvatica L:) at its Mediterranean distribution limit contradicts drought stress. Eur J For Res 133:61–71.

    Google Scholar 

  85. Tinner W, Vescovi E, van Leewen JFN, Colombaroli D, Henne PD, Kaltenrieder P, Morales-Molino C, Beffa G, Gnaegi B, van der Knaap WO, la Mantia T, Pasta S. 2016. Holocene vegetation and fire history of the mountains of Northern Sicily (Italy). Veg Hist Archaeobot 25:499–519.

    Google Scholar 

  86. Valbuena-Carabanña M, de Heredia UL, Fuentes-Utrilla P, Gonzaález-Doncel I, Gil L. 2010. Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palynol 162(3):492–506.

    Google Scholar 

  87. Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York: Springer.

    Google Scholar 

Download references

Acknowledgements

We thank José Juárez Benítez, director of the Sierra Norte de Guadalajara Natural Park, for all the facilities and support given. Field work assistance by Diego Galán, Belén Oñate and Gregorio Cerezo from Tejera Negra Natural Park, and by Pablo Castro Sánchez-Bermejo from UCM is also much appreciated. We also thank César Morales-Molino and one anonymous reviewer for their thoughtful comments on previous versions of the manuscript that have contributed to improve it significantly.

Funding

This work was funded by the Spanish Ministry of Science, Innovation and University through Projects: AGL2013-46028-R (SCALyFOR), AGL2016-76769-C2-1-R (FORESTCHANGE) and AGL2014-61175-(MEDFORMEC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rut Sánchez de Dios.

Additional information

Our data have been posted in the Complutense University E-prints. Thus they are now public using the following URL https://eprints.ucm.es/60360/

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez de Dios, R., Gómez, C., Aulló, I. et al. Fagus sylvatica L. Peripheral Populations in the Mediterranean Iberian Peninsula: Climatic or Anthropic Relicts?. Ecosystems 24, 211–226 (2021). https://doi.org/10.1007/s10021-020-00513-8

Download citation

Keywords

  • European beech
  • Relict
  • Climate
  • Historical land uses
  • Peripheral
  • Mediterranean
  • Global change