Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes

Abstract

Fire is an important disturbance in grassland ecosystems. Anthropogenic factors, especially land use, have drastically altered fire regimes in many regions, but how changing land-use intensity affects fire patterns remains weakly understood. Here, we reconstruct changes in fire regimes between 1989 and 2016 for the understudied Eurasian steppes, where major land-use changes happened after the dissolution of the Soviet Union in 1991. We mapped burned areas in a 540,000 km2 study region in northern Kazakhstan for 3-year periods centered on 1990, 2000, and 2015, based on all available Landsat imagery. We then used these maps to assess changes in the extent, number, and size of fires over time, and to explore links between changes in fire regimes and agriculture. We found a sevenfold increase in total burned area and an eightfold increase in fire numbers between 1990 and 2000. After 2000, burned area and fire numbers declined slightly, while fire size remained stable. Most of the observed increase in fires in the 1990s occurred on cropland, most likely due to the agricultural burning. The abandonment of cropland and pastures was also associated with intensified fire regimes, likely due to increased aboveground biomass and thus higher fuel loads. Overall, our results suggest that intensifying fire regimes on the Eurasian steppe are clearly linked to post-Soviet changes in agriculture. Given that fires on Eurasia’s steppes have wide-ranging consequences, affecting regions as far away as the Arctic, better regulation of agricultural practices, better fire monitoring, and more proactive fire management are needed.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Alvarado ST, Fornazari T, Cóstola A, Morellato LPC, Silva TSF. 2017. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: tracking long-term fire regimes using remote sensing. Ecol Ind 78:270–81.

    Google Scholar 

  2. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT. 2017. A human-driven decline in global burned area. Science 356:1356–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson J. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications:326–347.

  4. Andreae M. 1991. Biomass burning-its history, use, and distribution and its impact on environmental quality and global climate. In: Levine J, Ed. Global biomass burning: atmospheric, climatic, and biospheric implications. Cambridge: The MIT Press. p 3–21.

    Google Scholar 

  5. Archibald S, Lehmann CE, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci 110:6442–7.

    CAS  PubMed  Google Scholar 

  6. Argañaraz JP, Gavier Pizarro G, Zak M, Landi MA, Bellis LM. 2015. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Sci Total Environ 520:1–12.

    PubMed  Google Scholar 

  7. Arkhipkin OP, Spivak LP, Sagitdinova GN. 2010. Mapping of big fires on the basis of time series of the data of space monitoring. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 7:90–6.

    Google Scholar 

  8. Bahloul K, Pereladova OB, Soldatova N, Fisenko G, Sidorenko E, Sempéré AJ. 2001. Social organization and dispersion of introduced kulans (Equus hemionus kulan) and Przewalski horses (Equus przewalski) in the Bukhara Reserve, Uzbekistan. J Arid Environ 47:309–23.

    Google Scholar 

  9. Baumann M, Bleyhl B, Dara A, Hölzel N, Kamp J, Kraemer R, Müller D, Poetzschner F, Prishchepov A, Schierhorn F, Schmalenko A, Urazaliev R, Kuemmerle T. In preparation. Rewilding the steppes of Kazakhstan.

  10. Baydildina A, Alishbay A, Bayetova M. 2000. Policy reforms in Kazakhstan and their implications for policy research needs. In: Tashmatov A, Babu SC, Eds. Food policy reforms in Central Asia: setting the research priorities. Washington, DC: International Food Policy Research Institute. p 177–92.

    Google Scholar 

  11. Becker CM, Musabek EN, Seitenova A-GS, Urzhumova DS. 2005. The migration response to economic shock: lessons from Kazakhstan. J Comp Econ 33:107–32.

    Google Scholar 

  12. Beznosov AI, Uspanov UU. 1960. Soils of KazSSR. Academy of Science KazUSSR. https://books.google.de/books?id=DaMdAQAAMAAJ

  13. Bond W, Keeley J. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–94.

    PubMed  Google Scholar 

  14. Breiman L. 2001. Random forests. Mach Learn 45:5–32.

    Google Scholar 

  15. Brinkert A, Hölzel N, Sidorova TV, Kamp J. 2016. Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing affects successional pathways. Biodivers Conserv 25:2543–61.

    Google Scholar 

  16. Chen J, John R, Sun G, Fan P, Henebry GM, Fernández-Giménez ME, Zhang Y, Park H, Tian L, Groisman P, Ouyang Z, Allington G, Wu J, Shao C, Amarjargal A, Dong G, Gutman G, Huettmann F, Lafortezza R, Crank C, Qi J. 2018. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: five critical issues. Environ Res Lett 13:123004.

    Google Scholar 

  17. Chen Y, Ju W, Groisman P, Li J, Propastin P, Xu X, Zhou W, Ruan H. 2017. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe. Environ Res Lett 12:115005.

    Google Scholar 

  18. Chuvieco E, Giglio L, Justice C. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Change Biol 14:1488–502.

    Google Scholar 

  19. Chuvieco E, Pilar M, Justice C. 2003. Innovative concepts and methods in fire danger estimation. In: Proceedings of the 4th international workshop on remote sensing and GIS applications to forest fire management. Ghent University: EARSeL

  20. Collins SL, Calabrese LB. 2012. Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. J Veg Sci 23:563–75.

    Google Scholar 

  21. Collins SL, Smith MD. 2006. Scale-dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie. Ecology 87:2058–67.

    PubMed  Google Scholar 

  22. Dara A, Baumann M, Kuemmerle T, Pflugmacher D, Rabe A, Griffiths P, Hölzel N, Kamp J, Freitag M, Hostert P. 2018. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens Environ 213:49–60.

    Google Scholar 

  23. de Beurs KM, Henebry GM. 2004. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509.

    Google Scholar 

  24. D’Odorico P, Okin GS, Bestelmeyer BT. 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands: feedbacks and drivers of shrub encroachment. Ecohydrology 5:520–30.

    Google Scholar 

  25. Dubinin M, Luschekina A, Radeloff VC. 2011. Climate, livestock, and vegetation: what drives fire increase in the arid ecosystems of Southern Russia? Ecosystems 14:547–62.

    CAS  Google Scholar 

  26. Dubinin M, Potapov P, Lushchekina A, Radeloff VC. 2010. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114:1638–48.

    Google Scholar 

  27. Foley JA. 2005. Global consequences of land use. Science 309:570–4.

    CAS  PubMed  Google Scholar 

  28. Frantz D. 2017. Generation of higher level earth observation satellite products for regional environmental monitoring. http://ubt.opus.hbz-nrw.de/volltexte/2017/1046/pdf/frantz_phd.pdf

  29. Freitag M, Kamp J, Velbert F, Sidorova TV, Stirnemann I, Ullrich B, Dara A, Hölzel N. In preparation. Functional plant community responses to fire and grazing suggest an ecosystem regime shift on the Eurasian steppes triggered by the collapse of the Soviet Union.

  30. Fuhlendorf SD, Engle DM, Kerby J, Hamilton R. 2009. Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing. Conserv Biol 23:588–98.

    PubMed  Google Scholar 

  31. Giglio L, Randerson JT, van der Werf GR. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4): analysis of burned area. J Geophys Res Biogeosci 118:317–28.

    Google Scholar 

  32. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27.

    Google Scholar 

  33. Griffiths P, van der Linden S, Kuemmerle T, Hostert P. 2013. A pixel-based landsat compositing algorithm for large area land cover mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 6:2088–101.

    Google Scholar 

  34. Gudochkin MV, Mikhailenko OE, Stepanov LI. 1968. Lesa Kazakhstana. Alma-Ata: Kainar.

    Google Scholar 

  35. Hall JV, Loboda TV, Giglio L, McCarty GW. 2016. A MODIS-based burned area assessment for Russian croplands: mapping requirements and challenges. Remote Sens Environ 184:506–21.

    Google Scholar 

  36. Hankerson B, Schiehorn F, Prishchepov AV, Dong C, Eisfelder C, Müller D. 2019. Modeling the spatial distribution of grazing intensity in Kazakhstan. PLoS One 14:e0210051.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hantson S, Padilla M, Corti D, Chuvieco E. 2013. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens Environ 131:152–9.

    Google Scholar 

  38. Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, Williams B, Fairaux NM, Caldwell MK, Picotte JJ, Howard SM, Stitt S, Dwyer JL. 2017. Mapping burned areas using dense time-series of Landsat data. Remote Sens Environ 198:504–22.

    Google Scholar 

  39. Holden ZA, Smith AMS, Morgan P, Rollins MG, Gessler PE. 2005. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int J Remote Sens 26:4801–8.

    Google Scholar 

  40. Hollander M, Wolfe DA. 1999. Solutions manual to accompany nonparametric statistical methods. 2nd edn. New York: Wiley.

    Google Scholar 

  41. Holmes L. 2009. Crime, organised crime and corruption in post-communist Europe and the CIS. Communist Post-Communist Stud 42:265–87.

    Google Scholar 

  42. Kamp J, Koshkin MA, Bragina TM, Katzner TE, Milner-Gulland EJ, Schreiber D, Sheldon R, Shmalenko A, Smelansky I, Terraube J, Urazaliev R. 2016. Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv 25:2521–41.

    Google Scholar 

  43. Kamp J, Siderova TV, Salemgareev AR, Urazaliev RS, Donald PF, Hölzel N. 2012. Niche separation of larks (Alaudidae) and agricultural change on the drylands of the former Soviet Union. Agr Ecosyst Environ 155:41–9.

    Google Scholar 

  44. Kamp J, Urazaliev R, Donald PF, Hölzel N. 2011. Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Cons 144:2607–14.

    Google Scholar 

  45. Kerven C, Alimaev II, Behnke R, Davidson G, Malmakov N, Smailov A, Wright I, et al. 2006. Fragmenting pastoral mobility: changing grazing patterns in post-Soviet Kazakhstan. Rangelands of Central Asia: transformations, issues, and future challenges US Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 99–110.

  46. Khaidarov K, Arkhipov V. 2000. Forest fire situation in Kazakhstan. Int For Fire News 24:43–8.

    Google Scholar 

  47. Korontzi S, McCarty J, Loboda T, Kumar S, Justice C. 2006. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob Biogeochem Cycles . https://doi.org/10.1029/2005GB002529.

    Article  Google Scholar 

  48. Koshim A, Karatayev M, Clarke ML, Nock W. 2018. Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Adv Geosci 45:217–25.

    Google Scholar 

  49. Kovalskyy V, Roy DP. 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens Environ 130:280–93.

    Google Scholar 

  50. Lambin EF, Geist H, Eds. 2006. Land-use and land-cover change: local processes and global impacts. Berlin: Springer.

    Google Scholar 

  51. Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P, Morton DC, Rudel TK, Gasparri I, Munger J. 2013. Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Change 23:892–901.

    Google Scholar 

  52. Lesiv M, Schepaschenko D, Moltchanova E, Bun R, Dürauer M, Prishchepov AV, Schierhorn F, Estel S, Kuemmerle T, Alcántara C, Kussul N, Shchepashchenko M, Kutovaya O, Martynenko O, Karminov V, Shvidenko A, Havlik P, Kraxner F, See L, Fritz S. 2018. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci Data 5:180056.

    PubMed  PubMed Central  Google Scholar 

  53. Loboda TV, Giglio L, Boschetti L, Justice CO. 2012. Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia. Front Earth Sci 6:196–205.

    Google Scholar 

  54. Loveland TR, Dwyer JL. 2012. Landsat: Building a strong future. Remote Sens Environ 122:22–9.

    Google Scholar 

  55. McCarty JL, Krylov A, Prishchepov AV, Banach DM, Tyukavina A, Potapov P, Turubanova S. 2017. Agricultural fires in European Russia, Belarus, and Lithuania and Their Impact on Air Quality, 2002–2012. In: Gutman G, Radeloff V, Eds. Land-cover and land-use changes in Eastern Europe after the collapse of the Soviet Union in 1991. Cham: Springer. p 193–221. https://doi.org/10.1007/978-3-319-42638-9_9

    Google Scholar 

  56. McCauley M. 1976. Khrushchev and the development of Soviet agriculture: the Virgin land programme, 1953–1964. New York: Holmes and Meier Publishers.

    Google Scholar 

  57. McGarigal K, Cushman SA, Neel MC, Ene E. 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. Amherst, MA

  58. Meyfroidt P, Schierhorn F, Prishchepov AV, Müller D, Kuemmerle T. 2016. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob Environ Change 37:1–15.

    Google Scholar 

  59. Michel C. 2005. Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. J Geophys Res 110:4. https://doi.org/10.1029/2004JD005461.

    CAS  Article  Google Scholar 

  60. Ministry of Agriculture of the Republic of Kazakhstan. 2018. The Strategic Plan of the Ministry of Agriculture of the Republic of Kazakhstan for 2018–2021. http://mgov.kz/en/ministerstvo/strategicheskij-plan/. Last accessed 09 Jan 2019

  61. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E. 2011. Landscape—wildfire interactions in southern Europe: Implications for landscape management. J Environ Manage 92:2389–402.

    PubMed  Google Scholar 

  62. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB. 2014. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22.

    Google Scholar 

  63. Morgan JW. 1999. Defining grassland fire events and the response of perennial plants to annual fire in temperate grasslands of south-eastern Australia. Plant Ecol 144:127–44.

    Google Scholar 

  64. Munroe DK, van Berkel DB, Verburg PH, Olson JL. 2013. Alternative trajectories of land abandonment: causes, consequences and research challenges. Curr Opin Environ Sustain 5:471–6.

    Google Scholar 

  65. Nagy RC, Fusco E, Bradley B, Abatzoglou JT, Balch Jennifer. 2018. Human-related ignitions increase the number of large wildfires across US Ecoregions. Fire 1:4.

    Google Scholar 

  66. Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57.

    Google Scholar 

  67. Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB. 2017. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–8.

    PubMed  Google Scholar 

  68. Preston D, Fairbairn J, Paniagua N, Maas G, Yevara M, Beck S. 2003. Grazing and environmental change on the Tarija Altiplano, Bolivia. Mt Res Dev 23:141–8.

    Google Scholar 

  69. Prishchepov AV, Radeloff VC, Baumann M, Kuemmerle T, Müller D. 2012. Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ Res Lett 7:024021.

    Google Scholar 

  70. Rabin SS, Magi BI, Shevliakova E, Pacala SW. 2015. Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences 12:6591–604.

    CAS  Google Scholar 

  71. Robinson S, Milner-Gulland EJ. 2003. Political change and factors limiting numbers of wild and domestic ungulates in Kazakhstan. Hum Ecol 31:87–110.

    Google Scholar 

  72. Robinson S, Milner-Gulland EJ, Alimaev I. 2003. Rangeland degradation in Kazakhstan during the Soviet era: re-examining the evidence. J Arid Environ 53:419–39.

    Google Scholar 

  73. Rocca ME, Brown PM, MacDonald LH, Carrico CM. 2014. Climate change impacts on fire regimes and key ecosystem services in rocky mountain forests. For Ecol Manage 327:290–305.

    Google Scholar 

  74. Schierhorn F, Müller D, Prishchepov AV, Faramarzi M, Balmann A. 2014. The potential of Russia to increase its wheat production through cropland expansion and intensification. Global Food Sec 3:133–41.

    Google Scholar 

  75. Scurlock JMO, Hall DO. 1998. The global carbon sink: a grassland perspective. Glob Change Biol 4:229–33.

    Google Scholar 

  76. Semukhina O. 2018. The evolution of policing in post-soviet Russia: Paternalism versus service in police. Officers’ understanding of their role. Communist Post-Communist Stud 51:215–29.

    Google Scholar 

  77. Singh NJ, Milner-Gulland EJ. 2011. Conserving a moving target: planning protection for a migratory species as its distribution changes: landscape-scale planning for a migratory species. J Appl Ecol 48:35–46.

    Google Scholar 

  78. Smelyanskiy IE, Buyvolov YA, Bazhenov YA, Bakirova RT, Borovik LP, Borodin AP, Bykova EP, Vlasov AA, Gavrilenko VS, Goroshko OA, Gribkov AV, Kirilyuk VE, Korsun ML, Kreyndlin ML, Kuksin GV, Lysenko NY, Polchaninova NY, Pulyayev AI, Ryzhkov ZN, Ryabinina TE, Tkachyuk TE. 2015. Steppe fires and management of the wildfire situation in steppe protected areas: ecological and environmental aspects. Analytical review. Moscow: Publishing house of the Wildlife Conservation Center.

    Google Scholar 

  79. Stohl A, Berg T, Burkhart JF, Fjǽraa AM, Forster C, Herber A, Hov Ø, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Ström J, Tørseth K, Treffeisen R, Virkkunen K, Yttri KE. 2007. Arctic smoke and ash; record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos Chem Phys 7:511–34.

    CAS  Google Scholar 

  80. Sukhinin AI, French NHF, Kasischke ES, Hewson JH, Soja AJ, Csiszar IA, Hyer EJ, Loboda T, Conrad SG, Romasko VI, Pavlichenko EA, Miskiv SI, Slinkina OA. 2004. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sens Environ 93:546–64.

    Google Scholar 

  81. Syphard AD, Keeley JE, Abatzoglou JT. 2017. Trends and drivers of fire activity vary across California aridland ecosystems. J Arid Environ 144:110–22.

    Google Scholar 

  82. Tansey K. 2004. Vegetation burning in the year 2000: global burned area estimates from SPOT VEGETATION data. Geophys Res 109:D14S03.

    Google Scholar 

  83. Van Auken OW. 2000. Shrub invasions of North American semiarid Grasslands. Annu Rev Ecol Syst 31:197–215.

    Google Scholar 

  84. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M. 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–96.

    Google Scholar 

  85. Vorobyov VV, Belov AV, Eds. 1985. Rastitelnyi pokrov Zapadno-Sibirskoi ravniny. Moscow: Nauka.

    Google Scholar 

  86. Warneke C, Bahreini R, Brioude J, Brock CA, de Gouw JA, Fahey DW, Froyd KD, Holloway JS, Middlebrook A, Miller L, Montzka S, Murphy DM, Peischl J, Ryerson TB, Schwarz JP, Spackman JR, Veres P. 2009. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008: haze from biomass burning in the arctic. Geophys Res Lett 36:L02813.

    Google Scholar 

  87. White RP, Murray S, Rohweder M. 2000. Pilot analysis of global ecosystems: grassland ecosystems. Washington, DC: World Resources Institute.

    Google Scholar 

  88. Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, Cohen WB, Loveland TR, Woodcock CE. 2008. Landsat continuity: issues and opportunities for land cover monitoring. Remote Sens Environ 112:955–69.

    Google Scholar 

  89. Zhu C, Kobayashi H, Kanaya Y, Saito M. 2017. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands. Sci Rep 7. http://www.nature.com/articles/s41598-017-03739-0. Last accessed 30 Aug 2018

Download references

Acknowledgements

We thank David Frantz and Andreas Rabe for help with image processing and classification and Alexander V. Prishchepov for the Soviet topography maps and fruitful discussion on post-Soviet land-use change. We are grateful for the financial support by the Volkswagen Foundation through the project BALTRAK (#A112025). We thank Geoff Henebry and an anonymous reviewer for their very useful and constructive comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrey Dara.

Additional information

Author Contributions

AD and TK conceived the ideas for the study; AD, JK, NH, and BU collected the data; AD analyzed the data; and AD led the writing with contribution from all authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4940 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dara, A., Baumann, M., Hölzel, N. et al. Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes. Ecosystems 23, 943–956 (2020). https://doi.org/10.1007/s10021-019-00447-w

Download citation

Keywords

  • fire regime
  • burned area
  • land abandonment
  • grasslands
  • remote sensing
  • Landsat