pp 1–14 | Cite as

Post-Soviet Land-Use Change Affected Fire Regimes on the Eurasian Steppes

  • Andrey DaraEmail author
  • Matthias Baumann
  • Norbert Hölzel
  • Patrick Hostert
  • Johannes Kamp
  • Daniel Müller
  • Benjamin Ullrich
  • Tobias Kuemmerle


Fire is an important disturbance in grassland ecosystems. Anthropogenic factors, especially land use, have drastically altered fire regimes in many regions, but how changing land-use intensity affects fire patterns remains weakly understood. Here, we reconstruct changes in fire regimes between 1989 and 2016 for the understudied Eurasian steppes, where major land-use changes happened after the dissolution of the Soviet Union in 1991. We mapped burned areas in a 540,000 km2 study region in northern Kazakhstan for 3-year periods centered on 1990, 2000, and 2015, based on all available Landsat imagery. We then used these maps to assess changes in the extent, number, and size of fires over time, and to explore links between changes in fire regimes and agriculture. We found a sevenfold increase in total burned area and an eightfold increase in fire numbers between 1990 and 2000. After 2000, burned area and fire numbers declined slightly, while fire size remained stable. Most of the observed increase in fires in the 1990s occurred on cropland, most likely due to the agricultural burning. The abandonment of cropland and pastures was also associated with intensified fire regimes, likely due to increased aboveground biomass and thus higher fuel loads. Overall, our results suggest that intensifying fire regimes on the Eurasian steppe are clearly linked to post-Soviet changes in agriculture. Given that fires on Eurasia’s steppes have wide-ranging consequences, affecting regions as far away as the Arctic, better regulation of agricultural practices, better fire monitoring, and more proactive fire management are needed.


fire regime burned area land abandonment grasslands remote sensing Landsat 



We thank David Frantz and Andreas Rabe for help with image processing and classification and Alexander V. Prishchepov for the Soviet topography maps and fruitful discussion on post-Soviet land-use change. We are grateful for the financial support by the Volkswagen Foundation through the project BALTRAK (#A112025). We thank Geoff Henebry and an anonymous reviewer for their very useful and constructive comments.

Supplementary material

10021_2019_447_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4940 kb)


  1. Alvarado ST, Fornazari T, Cóstola A, Morellato LPC, Silva TSF. 2017. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: tracking long-term fire regimes using remote sensing. Ecol Ind 78:270–81.CrossRefGoogle Scholar
  2. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT. 2017. A human-driven decline in global burned area. Science 356:1356–62.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anderson J. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications:326–347.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Andreae M. 1991. Biomass burning-its history, use, and distribution and its impact on environmental quality and global climate. In: Levine J, Ed. Global biomass burning: atmospheric, climatic, and biospheric implications. Cambridge: The MIT Press. p 3–21.Google Scholar
  5. Archibald S, Lehmann CE, Gómez-Dans JL, Bradstock RA. 2013. Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci 110:6442–7.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Argañaraz JP, Gavier Pizarro G, Zak M, Landi MA, Bellis LM. 2015. Human and biophysical drivers of fires in Semiarid Chaco mountains of Central Argentina. Sci Total Environ 520:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arkhipkin OP, Spivak LP, Sagitdinova GN. 2010. Mapping of big fires on the basis of time series of the data of space monitoring. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 7:90–6.Google Scholar
  8. Bahloul K, Pereladova OB, Soldatova N, Fisenko G, Sidorenko E, Sempéré AJ. 2001. Social organization and dispersion of introduced kulans (Equus hemionus kulan) and Przewalski horses (Equus przewalski) in the Bukhara Reserve, Uzbekistan. J Arid Environ 47:309–23.CrossRefGoogle Scholar
  9. Baumann M, Bleyhl B, Dara A, Hölzel N, Kamp J, Kraemer R, Müller D, Poetzschner F, Prishchepov A, Schierhorn F, Schmalenko A, Urazaliev R, Kuemmerle T. In preparation. Rewilding the steppes of Kazakhstan.Google Scholar
  10. Baydildina A, Alishbay A, Bayetova M. 2000. Policy reforms in Kazakhstan and their implications for policy research needs. In: Tashmatov A, Babu SC, Eds. Food policy reforms in Central Asia: setting the research priorities. Washington, DC: International Food Policy Research Institute. p 177–92.Google Scholar
  11. Becker CM, Musabek EN, Seitenova A-GS, Urzhumova DS. 2005. The migration response to economic shock: lessons from Kazakhstan. J Comp Econ 33:107–32.CrossRefGoogle Scholar
  12. Beznosov AI, Uspanov UU. 1960. Soils of KazSSR. Academy of Science KazUSSR.
  13. Bond W, Keeley J. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–94.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Breiman L. 2001. Random forests. Mach Learn 45:5–32.CrossRefGoogle Scholar
  15. Brinkert A, Hölzel N, Sidorova TV, Kamp J. 2016. Spontaneous steppe restoration on abandoned cropland in Kazakhstan: grazing affects successional pathways. Biodivers Conserv 25:2543–61.CrossRefGoogle Scholar
  16. Chen J, John R, Sun G, Fan P, Henebry GM, Fernández-Giménez ME, Zhang Y, Park H, Tian L, Groisman P, Ouyang Z, Allington G, Wu J, Shao C, Amarjargal A, Dong G, Gutman G, Huettmann F, Lafortezza R, Crank C, Qi J. 2018. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: five critical issues. Environ Res Lett 13:123004.CrossRefGoogle Scholar
  17. Chen Y, Ju W, Groisman P, Li J, Propastin P, Xu X, Zhou W, Ruan H. 2017. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe. Environ Res Lett 12:115005.CrossRefGoogle Scholar
  18. Chuvieco E, Giglio L, Justice C. 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Glob Change Biol 14:1488–502.CrossRefGoogle Scholar
  19. Chuvieco E, Pilar M, Justice C. 2003. Innovative concepts and methods in fire danger estimation. In: Proceedings of the 4th international workshop on remote sensing and GIS applications to forest fire management. Ghent University: EARSeLGoogle Scholar
  20. Collins SL, Calabrese LB. 2012. Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. J Veg Sci 23:563–75.CrossRefGoogle Scholar
  21. Collins SL, Smith MD. 2006. Scale-dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie. Ecology 87:2058–67.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dara A, Baumann M, Kuemmerle T, Pflugmacher D, Rabe A, Griffiths P, Hölzel N, Kamp J, Freitag M, Hostert P. 2018. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens Environ 213:49–60.CrossRefGoogle Scholar
  23. de Beurs KM, Henebry GM. 2004. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens Environ 89:497–509.CrossRefGoogle Scholar
  24. D’Odorico P, Okin GS, Bestelmeyer BT. 2012. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands: feedbacks and drivers of shrub encroachment. Ecohydrology 5:520–30.CrossRefGoogle Scholar
  25. Dubinin M, Luschekina A, Radeloff VC. 2011. Climate, livestock, and vegetation: what drives fire increase in the arid ecosystems of Southern Russia? Ecosystems 14:547–62.CrossRefGoogle Scholar
  26. Dubinin M, Potapov P, Lushchekina A, Radeloff VC. 2010. Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114:1638–48.CrossRefGoogle Scholar
  27. Foley JA. 2005. Global consequences of land use. Science 309:570–4.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Frantz D. 2017. Generation of higher level earth observation satellite products for regional environmental monitoring.
  29. Freitag M, Kamp J, Velbert F, Sidorova TV, Stirnemann I, Ullrich B, Dara A, Hölzel N. In preparation. Functional plant community responses to fire and grazing suggest an ecosystem regime shift on the Eurasian steppes triggered by the collapse of the Soviet Union.Google Scholar
  30. Fuhlendorf SD, Engle DM, Kerby J, Hamilton R. 2009. Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing. Conserv Biol 23:588–98.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Giglio L, Randerson JT, van der Werf GR. 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4): analysis of burned area. J Geophys Res Biogeosci 118:317–28.CrossRefGoogle Scholar
  32. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27.CrossRefGoogle Scholar
  33. Griffiths P, van der Linden S, Kuemmerle T, Hostert P. 2013. A pixel-based landsat compositing algorithm for large area land cover mapping. IEEE J Sel Top Appl Earth Obs Remote Sens 6:2088–101.CrossRefGoogle Scholar
  34. Gudochkin MV, Mikhailenko OE, Stepanov LI. 1968. Lesa Kazakhstana. Alma-Ata: Kainar.Google Scholar
  35. Hall JV, Loboda TV, Giglio L, McCarty GW. 2016. A MODIS-based burned area assessment for Russian croplands: mapping requirements and challenges. Remote Sens Environ 184:506–21.CrossRefGoogle Scholar
  36. Hankerson B, Schiehorn F, Prishchepov AV, Dong C, Eisfelder C, Müller D. 2019. Modeling the spatial distribution of grazing intensity in Kazakhstan. PLoS One 14:e0210051.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hantson S, Padilla M, Corti D, Chuvieco E. 2013. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens Environ 131:152–9.CrossRefGoogle Scholar
  38. Hawbaker TJ, Vanderhoof MK, Beal Y-J, Takacs JD, Schmidt GL, Falgout JT, Williams B, Fairaux NM, Caldwell MK, Picotte JJ, Howard SM, Stitt S, Dwyer JL. 2017. Mapping burned areas using dense time-series of Landsat data. Remote Sens Environ 198:504–22.CrossRefGoogle Scholar
  39. Holden ZA, Smith AMS, Morgan P, Rollins MG, Gessler PE. 2005. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int J Remote Sens 26:4801–8.CrossRefGoogle Scholar
  40. Hollander M, Wolfe DA. 1999. Solutions manual to accompany nonparametric statistical methods. 2nd edn. New York: Wiley.Google Scholar
  41. Holmes L. 2009. Crime, organised crime and corruption in post-communist Europe and the CIS. Communist Post-Communist Stud 42:265–87.CrossRefGoogle Scholar
  42. Kamp J, Koshkin MA, Bragina TM, Katzner TE, Milner-Gulland EJ, Schreiber D, Sheldon R, Shmalenko A, Smelansky I, Terraube J, Urazaliev R. 2016. Persistent and novel threats to the biodiversity of Kazakhstan’s steppes and semi-deserts. Biodivers Conserv 25:2521–41.CrossRefGoogle Scholar
  43. Kamp J, Siderova TV, Salemgareev AR, Urazaliev RS, Donald PF, Hölzel N. 2012. Niche separation of larks (Alaudidae) and agricultural change on the drylands of the former Soviet Union. Agr Ecosyst Environ 155:41–9.CrossRefGoogle Scholar
  44. Kamp J, Urazaliev R, Donald PF, Hölzel N. 2011. Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Cons 144:2607–14.CrossRefGoogle Scholar
  45. Kerven C, Alimaev II, Behnke R, Davidson G, Malmakov N, Smailov A, Wright I, et al. 2006. Fragmenting pastoral mobility: changing grazing patterns in post-Soviet Kazakhstan. Rangelands of Central Asia: transformations, issues, and future challenges US Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 99–110.Google Scholar
  46. Khaidarov K, Arkhipov V. 2000. Forest fire situation in Kazakhstan. Int For Fire News 24:43–8.Google Scholar
  47. Korontzi S, McCarty J, Loboda T, Kumar S, Justice C. 2006. Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Glob Biogeochem Cycles . Scholar
  48. Koshim A, Karatayev M, Clarke ML, Nock W. 2018. Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Adv Geosci 45:217–25.CrossRefGoogle Scholar
  49. Kovalskyy V, Roy DP. 2013. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens Environ 130:280–93.CrossRefGoogle Scholar
  50. Lambin EF, Geist H, Eds. 2006. Land-use and land-cover change: local processes and global impacts. Berlin: Springer.Google Scholar
  51. Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P, Morton DC, Rudel TK, Gasparri I, Munger J. 2013. Estimating the world’s potentially available cropland using a bottom-up approach. Glob Environ Change 23:892–901.CrossRefGoogle Scholar
  52. Lesiv M, Schepaschenko D, Moltchanova E, Bun R, Dürauer M, Prishchepov AV, Schierhorn F, Estel S, Kuemmerle T, Alcántara C, Kussul N, Shchepashchenko M, Kutovaya O, Martynenko O, Karminov V, Shvidenko A, Havlik P, Kraxner F, See L, Fritz S. 2018. Spatial distribution of arable and abandoned land across former Soviet Union countries. Sci Data 5:180056.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Loboda TV, Giglio L, Boschetti L, Justice CO. 2012. Regional fire monitoring and characterization using global NASA MODIS fire products in dry lands of Central Asia. Front Earth Sci 6:196–205.CrossRefGoogle Scholar
  54. Loveland TR, Dwyer JL. 2012. Landsat: Building a strong future. Remote Sens Environ 122:22–9.CrossRefGoogle Scholar
  55. McCarty JL, Krylov A, Prishchepov AV, Banach DM, Tyukavina A, Potapov P, Turubanova S. 2017. Agricultural fires in European Russia, Belarus, and Lithuania and Their Impact on Air Quality, 2002–2012. In: Gutman G, Radeloff V, Eds. Land-cover and land-use changes in Eastern Europe after the collapse of the Soviet Union in 1991. Cham: Springer. p 193–221. CrossRefGoogle Scholar
  56. McCauley M. 1976. Khrushchev and the development of Soviet agriculture: the Virgin land programme, 1953–1964. New York: Holmes and Meier Publishers.CrossRefGoogle Scholar
  57. McGarigal K, Cushman SA, Neel MC, Ene E. 2002. FRAGSTATS: spatial pattern analysis program for categorical maps. Amherst, MAGoogle Scholar
  58. Meyfroidt P, Schierhorn F, Prishchepov AV, Müller D, Kuemmerle T. 2016. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob Environ Change 37:1–15.CrossRefGoogle Scholar
  59. Michel C. 2005. Biomass burning emission inventory from burnt area data given by the SPOT-VEGETATION system in the frame of TRACE-P and ACE-Asia campaigns. J Geophys Res 110:4. Scholar
  60. Ministry of Agriculture of the Republic of Kazakhstan. 2018. The Strategic Plan of the Ministry of Agriculture of the Republic of Kazakhstan for 2018–2021. Last accessed 09 Jan 2019
  61. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E. 2011. Landscape—wildfire interactions in southern Europe: Implications for landscape management. J Environ Manage 92:2389–402.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Moreno MV, Conedera M, Chuvieco E, Pezzatti GB. 2014. Fire regime changes and major driving forces in Spain from 1968 to 2010. Environ Sci Policy 37:11–22.CrossRefGoogle Scholar
  63. Morgan JW. 1999. Defining grassland fire events and the response of perennial plants to annual fire in temperate grasslands of south-eastern Australia. Plant Ecol 144:127–44.CrossRefGoogle Scholar
  64. Munroe DK, van Berkel DB, Verburg PH, Olson JL. 2013. Alternative trajectories of land abandonment: causes, consequences and research challenges. Curr Opin Environ Sustain 5:471–6.CrossRefGoogle Scholar
  65. Nagy RC, Fusco E, Bradley B, Abatzoglou JT, Balch Jennifer. 2018. Human-related ignitions increase the number of large wildfires across US Ecoregions. Fire 1:4.CrossRefGoogle Scholar
  66. Olofsson P, Foody GM, Herold M, Stehman SV, Woodcock CE, Wulder MA. 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sens Environ 148:42–57.CrossRefGoogle Scholar
  67. Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB. 2017. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Preston D, Fairbairn J, Paniagua N, Maas G, Yevara M, Beck S. 2003. Grazing and environmental change on the Tarija Altiplano, Bolivia. Mt Res Dev 23:141–8.CrossRefGoogle Scholar
  69. Prishchepov AV, Radeloff VC, Baumann M, Kuemmerle T, Müller D. 2012. Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environ Res Lett 7:024021.CrossRefGoogle Scholar
  70. Rabin SS, Magi BI, Shevliakova E, Pacala SW. 2015. Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences 12:6591–604.CrossRefGoogle Scholar
  71. Robinson S, Milner-Gulland EJ. 2003. Political change and factors limiting numbers of wild and domestic ungulates in Kazakhstan. Hum Ecol 31:87–110.CrossRefGoogle Scholar
  72. Robinson S, Milner-Gulland EJ, Alimaev I. 2003. Rangeland degradation in Kazakhstan during the Soviet era: re-examining the evidence. J Arid Environ 53:419–39.CrossRefGoogle Scholar
  73. Rocca ME, Brown PM, MacDonald LH, Carrico CM. 2014. Climate change impacts on fire regimes and key ecosystem services in rocky mountain forests. For Ecol Manage 327:290–305.CrossRefGoogle Scholar
  74. Schierhorn F, Müller D, Prishchepov AV, Faramarzi M, Balmann A. 2014. The potential of Russia to increase its wheat production through cropland expansion and intensification. Global Food Sec 3:133–41.CrossRefGoogle Scholar
  75. Scurlock JMO, Hall DO. 1998. The global carbon sink: a grassland perspective. Glob Change Biol 4:229–33.CrossRefGoogle Scholar
  76. Semukhina O. 2018. The evolution of policing in post-soviet Russia: Paternalism versus service in police. Officers’ understanding of their role. Communist Post-Communist Stud 51:215–29.CrossRefGoogle Scholar
  77. Singh NJ, Milner-Gulland EJ. 2011. Conserving a moving target: planning protection for a migratory species as its distribution changes: landscape-scale planning for a migratory species. J Appl Ecol 48:35–46.CrossRefGoogle Scholar
  78. Smelyanskiy IE, Buyvolov YA, Bazhenov YA, Bakirova RT, Borovik LP, Borodin AP, Bykova EP, Vlasov AA, Gavrilenko VS, Goroshko OA, Gribkov AV, Kirilyuk VE, Korsun ML, Kreyndlin ML, Kuksin GV, Lysenko NY, Polchaninova NY, Pulyayev AI, Ryzhkov ZN, Ryabinina TE, Tkachyuk TE. 2015. Steppe fires and management of the wildfire situation in steppe protected areas: ecological and environmental aspects. Analytical review. Moscow: Publishing house of the Wildlife Conservation Center.Google Scholar
  79. Stohl A, Berg T, Burkhart JF, Fjǽraa AM, Forster C, Herber A, Hov Ø, Lunder C, McMillan WW, Oltmans S, Shiobara M, Simpson D, Solberg S, Stebel K, Ström J, Tørseth K, Treffeisen R, Virkkunen K, Yttri KE. 2007. Arctic smoke and ash; record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006. Atmos Chem Phys 7:511–34.CrossRefGoogle Scholar
  80. Sukhinin AI, French NHF, Kasischke ES, Hewson JH, Soja AJ, Csiszar IA, Hyer EJ, Loboda T, Conrad SG, Romasko VI, Pavlichenko EA, Miskiv SI, Slinkina OA. 2004. AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sens Environ 93:546–64.CrossRefGoogle Scholar
  81. Syphard AD, Keeley JE, Abatzoglou JT. 2017. Trends and drivers of fire activity vary across California aridland ecosystems. J Arid Environ 144:110–22.CrossRefGoogle Scholar
  82. Tansey K. 2004. Vegetation burning in the year 2000: global burned area estimates from SPOT VEGETATION data. Geophys Res 109:D14S03.CrossRefGoogle Scholar
  83. Van Auken OW. 2000. Shrub invasions of North American semiarid Grasslands. Annu Rev Ecol Syst 31:197–215.CrossRefGoogle Scholar
  84. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M. 2008. Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–96.CrossRefGoogle Scholar
  85. Vorobyov VV, Belov AV, Eds. 1985. Rastitelnyi pokrov Zapadno-Sibirskoi ravniny. Moscow: Nauka.Google Scholar
  86. Warneke C, Bahreini R, Brioude J, Brock CA, de Gouw JA, Fahey DW, Froyd KD, Holloway JS, Middlebrook A, Miller L, Montzka S, Murphy DM, Peischl J, Ryerson TB, Schwarz JP, Spackman JR, Veres P. 2009. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008: haze from biomass burning in the arctic. Geophys Res Lett 36:L02813.CrossRefGoogle Scholar
  87. White RP, Murray S, Rohweder M. 2000. Pilot analysis of global ecosystems: grassland ecosystems. Washington, DC: World Resources Institute.Google Scholar
  88. Wulder MA, White JC, Goward SN, Masek JG, Irons JR, Herold M, Cohen WB, Loveland TR, Woodcock CE. 2008. Landsat continuity: issues and opportunities for land cover monitoring. Remote Sens Environ 112:955–69.CrossRefGoogle Scholar
  89. Zhu C, Kobayashi H, Kanaya Y, Saito M. 2017. Size-dependent validation of MODIS MCD64A1 burned area over six vegetation types in boreal Eurasia: Large underestimation in croplands. Sci Rep 7. Last accessed 30 Aug 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geography DepartmentHumboldt-Universität zu BerlinBerlinGermany
  2. 2.Leibniz Institute for Agricultural Development in Transition Economies (IAMO)Halle (Saale)Germany
  3. 3.Institute of Landscape EcologyUniversity of MünsterMünsterGermany
  4. 4.Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys)Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations