Mechanisms for the Development of Microform Patterns in Peatlands of the Hudson Bay Lowland

Abstract

Spatial surface patterns of hummocks, hollows, ridges, and pools (microtopography) are common features of many northern peatlands and are particularly distinct within the vast peatlands of the Hudson Bay Lowland (HBL), Canada. Hypotheses and models describe how small-scale feedbacks among vegetation, hydrology, and nutrients cause spatial differences in peat accumulation that enable microforms and surface patterns to develop over time. Empirical tests of the predictions from theoretical models of these proposed feedback mechanisms are limited, particularly in large peatland complexes such as the HBL. We investigate feedbacks controlling peatland structure and function in an ombrogenous bog and a minerogenous fen in the HBL. Our sites represent surface patterns found in many northern peatlands, specifically spatially irregular hummocks and hollows, and parallel ridges and pools that are perpendicular to slope. We found the occurrence of different spatial patterns depends on position within a peat landform, with these differences attributed to the ecohydrological setting. In turn, the ecohydrological setting, with different water table depths, nutrient availability, and species composition, influences the strength and direction of feedback mechanisms at the microform scale. Our data support the prediction of a positive feedback between plant productivity and acrotelm thickness for peat accumulation and hummock growth and that this may be enhanced by water ponding on slopes to form ridge–pool tracks. We did not find evidence to support the proposed feedback among evapotranspiration-driven transport of water and nutrients for the development of hummocks. Our results suggest a combination of mechanisms operating at various temporal and spatial scales is associated with the development of surface patterns in northern peatlands.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Data Availability

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.n5j2h8d (Harris et al. 2019).

References

  1. Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H, Tuittila ET. 2011. Environmental control and spatial structures in peatland vegetation. J Veg Sci 22:878–90. https://doi.org/10.1111/j.1654-1103.2011.01295.x.

    Article  Google Scholar 

  2. Andrus RE, Wagner DJ, Titus JE. 1983. Vertical zonation of Sphagnum mosses along hummock–hollow gradients. Can J Bot 61:3128–39. https://doi.org/10.1139/b83-352.

    Article  Google Scholar 

  3. Baird AJ, Milner AM, Blundell A, Swindles GT, Morris PJ. 2015. Microform-scale variations in peatland permeability and their ecohydrological implications. J Ecol 104:531–44. https://doi.org/10.1111/1365-2745.12530.

    Article  Google Scholar 

  4. Belyea LR, Clymo RS. 1998. Do hollows control the rate of peat bog growth? In: Standen V, Tallis JH, Meade R, Eds. Patterned mires and mire pools. London: British Ecological Society. p 55–65.

    Google Scholar 

  5. Belyea LR, Clymo RS. 2001. Feedback control of the rate of peat formation. Proc Biol Sci 268:1315–21. https://doi.org/10.1098/rspb.2001.1665.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Belyea LR, Baird AJ. 2006. Beyond “The limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76:299–322. https://doi.org/10.1890/0012-9615(2006)076[0299:btltpb]2.0.co;2.

    Article  Google Scholar 

  7. Bourbonniere RA. 2009. Review of water chemistry research in natural and disturbed peatlands. Can Water Resour J 34:393–414. https://doi.org/10.4296/cwrj3404393.

    Article  Google Scholar 

  8. Branham JE, Strack M. 2014. Saturated hydraulic conductivity in Sphagnum-dominated peatlands: do microforms matter? Hydrol Process 28:4352–62. https://doi.org/10.1002/hyp.10228.

    Article  Google Scholar 

  9. Brodo IM, Sharnoff SD, Sharnoff S, Canadian Museum of Nature. 2001. Lichens of North America. New Haven: Yale University Press.

    Google Scholar 

  10. Bubier JL, Crill PM, Moore TR, Savage K, Varner RK. 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob Biogeochem Cycles 12:703–14. https://doi.org/10.1029/98GB02426.

    CAS  Article  Google Scholar 

  11. Bubier JL, Bhatia G, Moore TR, Roulet NT, Lafleur PM. 2003. Spatial and temporal variability in growing-season net ecosystem carbon dioxide exchange at a large peatland in Ontario, Canada. Ecosystems 6:353–67. https://doi.org/10.1007/s10021-003-0125-0.

    Article  Google Scholar 

  12. Carlson-Mazur ML, Wiley MJ, Wilcox DA. 2014. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario. Ecohydrology 7:378–90. https://doi.org/10.1002/eco.1356.

    Article  Google Scholar 

  13. Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Schulze ED. 2006. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–50. https://doi.org/10.1007/s10021-005-0105-7.

    CAS  Article  Google Scholar 

  14. Clymo RS. 1984. The limits to peat bog growth. Philos Trans R Soc B 303:605–54. https://doi.org/10.1098/rstb.1984.0002.

    Article  Google Scholar 

  15. Clymo RS. 1992. Models of peat growth. Suo 43:127–36.

    Google Scholar 

  16. Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Aerts R. 2001. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–94. https://doi.org/10.1046/j.1365-2745.2001.00625.x.

    Article  Google Scholar 

  17. Couwenberg J, Joosten H. 2005. Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity. J Ecol 93:1238–48. https://doi.org/10.1111/j.1365-2745.2005.01035.x.

    Article  Google Scholar 

  18. DeLucia EH, Schlesinger WH. 1995. Photosynthetic rates and nutrient-use efficiency among evergreen and deciduous shrubs in Okefenokee swamp. Int J Plant Sci 156:19–28. https://doi.org/10.1086/297224.

    Article  Google Scholar 

  19. Dimitrov DD, Grant RF, Lafleur PM, Humphreys ER. 2010. Modeling the subsurface hydrology of Mer Bleue Bog. Soil Sci Soc Am J 74:680–94. https://doi.org/10.2136/sssaj2009.0148.

    CAS  Article  Google Scholar 

  20. Duval TP, Waddington JM, Branfireun BA. 2012. Hydrological and biogeochemical controls on plant species distribution within calcareous fens. Ecohydrology 5:73–89. https://doi.org/10.1002/eco.202.

    CAS  Article  Google Scholar 

  21. Environment Canada. 2016. Canadian climate normal or averages 1971–2000. http://climate.weather.gc.ca/climate_normals/index_e.html.

  22. Eppinga MB, Rietkerk M, Borren W, Lapshina ED, Bleuten W, Wassen MJ. 2008. Regular surface patterning of peatlands: confronting theory with field data. Ecosystems 11:520–36. https://doi.org/10.1007/s10021-008-9138-z.

    CAS  Article  Google Scholar 

  23. Eppinga MB, De Ruiter PC, Wassen MJ, Rietkerk M. 2009a. Nutrients and hydrology indicate the driving mechanisms of peatland surface patterning. Am Nat 173:803–18. https://doi.org/10.1086/598487.

    Article  PubMed  Google Scholar 

  24. Eppinga MB, Rietkerk M, Wassen MJ, Ruiter PC. 2009b. Linking habitat modification to catastrophic shifts and vegetation patterns in bogs. Plant Ecol 200:53–68. https://doi.org/10.1007/s11258-007-9309-6.

    Article  Google Scholar 

  25. Eppinga MB, Rietkerk M, Belyea LR, Nilsson MB, De Ruiter PC, Wassen MJ. 2010. Resource contrast in patterned peatlands increases along a climatic gradient. Ecology 91:2344–55. https://doi.org/10.1890/09-1313.1.

    Article  PubMed  Google Scholar 

  26. Flora of North America Editorial Committee. 1993+. Flora of North America North of Mexico. 19+vols. New York and Oxford.

  27. Foster DR, King GA, Glaser PH, Wright HE. 1983. Origin of string patterns in boreal peatlands. Nature 306:256–8. https://doi.org/10.1038/306256a0.

    Article  Google Scholar 

  28. Foster DR, King GA, Santelmann MV. 1988a. Patterned fens of western Labrador and adjacent Quebec: phytosociology, water chemistry, landform features, and dynamics of surface patterns. Can J Bot 66:2402–18. https://doi.org/10.1139/b88-327.

    CAS  Article  Google Scholar 

  29. Foster DR, Wright HE, Thelaus M, King GA. 1988b. Bog development and landform dynamics in Central Sweden and South-Eastern Labrador, Canada. J Ecol 76:1164–85. https://doi.org/10.2307/2260641.

    Article  Google Scholar 

  30. Foster DR, Wright HE. 1990. Role of ecosystem development and climate change in bog formation in Central Sweden. Ecology 71:450–63. https://doi.org/10.2307/1940300.

    Article  Google Scholar 

  31. Frolking SE, Bubier JL, Moore TR, Ball T, Bellisario LM, Bhardwaj A, Carroll P, Crill PM, Lafleur PM, McCaughey JH, Roulet NT, Suyker AE, Verma SB, Waddington JM, Whiting GJ. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob Biogeochem Cycles 12:115–26. https://doi.org/10.1029/97GB03367.

    CAS  Article  Google Scholar 

  32. Glaser PH, Wheeler GA, Gorham E, Wright HE. 1981. The patterned mires of the Red Lake Peatland, northern Minnesota: vegetation, water chemistry, and landforms. J Ecol 69:575–99. https://doi.org/10.2307/2259685.

    CAS  Article  Google Scholar 

  33. Glaser PH. 1983. Vegetation patterns in the North Black River Peatland, northern Minnesota, USA. Can J Bot 61:2085–104. https://doi.org/10.1139/b83-225.

    Article  Google Scholar 

  34. Glaser PH. 1989. Detecting biotic and hydrogeochemical processes in large peat basins with Landsat TM imagery. Remote Sens Environ 28:109–19. https://doi.org/10.1016/0034-4257(89)90109-0.

    Article  Google Scholar 

  35. Glaser PH, Janssens JA, Siegelt DI. 1990. The response of vegetation to chemical and hydrological gradients in the Lost River Peatland, northern Minnesota. J Ecol 78:1021–48. https://doi.org/10.2307/2260950.

    Article  Google Scholar 

  36. Glaser PH. 1992. Peat landforms. In: Wright HE, Coffin B, Aaseng NE, Eds. Patterned peatlands of Minnesota. Minneapolis: University of Minnesota Press.

    Google Scholar 

  37. Glaser PH, Hansen BC, Siegel DI, Reeve AS, Morin PJ. 2004a. Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario, Canada. J Ecol 92:1036–53. https://doi.org/10.1111/j.0022-0477.2004.00931.x.

    Article  Google Scholar 

  38. Glaser PH, Siegel DI, Reeve AS, Janssens JA, Janecky DR. 2004b. Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. J Ecol 92:1054–70. https://doi.org/10.1111/j.0022-0477.2004.00930.x.

    Article  Google Scholar 

  39. Gribovszki Z, Szilágyi J, Kalicz P. 2010. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation: a review. J Hydrol 385:371–83. https://doi.org/10.1016/j.jhydrol.2010.02.001.

    Article  Google Scholar 

  40. Harris LI, Moore TR, Roulet NT, Pinsonneault AJ. 2018. Lichens: a limit to peat growth? J Ecol 106:2301–19. https://doi.org/10.1111/1365-2745.12975.

    Article  Google Scholar 

  41. Hangs RD, Greer KJ, Sulewski CA. 2004. The effect of interspecific competition on conifer seedling growth and nitrogen availability measured using ion-exchange membranes. Can J For Res 34:754–61. https://doi.org/10.1139/x03-229.

    Article  Google Scholar 

  42. Humphreys ER, Charron C, Brown M, Jones R. 2014. Two bogs in the Canadian Hudson Bay Lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct Antarct Alp Res 46:103–13. https://doi.org/10.1657/1938-4246.46.1.103.

    Article  Google Scholar 

  43. Ingram HA. 1978. Soil layers in mires: function and terminology. J Soil Sci 29:224–7. https://doi.org/10.1111/j.1365-2389.1978.tb02053.x.

    Article  Google Scholar 

  44. Ivanov KE. 1981. Water movement in mirelands. London: Academic Press.

    Google Scholar 

  45. Korrensalo A, Hájek T, Vesala T, Mehtätalo L, Tuittila ES. 2016. Variation in photosynthetic properties among bog plants. Botany 94:1127–39. https://doi.org/10.1139/cjb-2016-0117.

    CAS  Article  Google Scholar 

  46. Kumpula J, Colpaert A, Nieminen M. 2000. Condition, potential recovery rate, and productivity of lichen (Cladonia spp.) ranges in the Finnish reindeer management area. Arctic 53:152–60. https://doi.org/10.14430/arctic845.

    Article  Google Scholar 

  47. Kytöviita MM, Crittenden PD. 2007. Growth and nitrogen relations in the mat-forming lichens Stereocaulon paschale and Cladonia stellaris. Ann Bot 100:1537–45. https://doi.org/10.1093/aob/mcm249.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Lafleur PM, Hember RA, Admiral SW, Roulet NT. 2005. Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrol Process 19:3533–50. https://doi.org/10.1002/hyp.5842.

    Article  Google Scholar 

  49. Laine AM, Bubier J, Riutta T, Nilsson MB, Moore TR, Vasander H, Tuittila ES. 2012. Abundance and composition of plant biomass as potential controls for mire net ecosystem CO2 exchange. Botany 90:63–74. https://doi.org/10.1139/b11-068.

    CAS  Article  Google Scholar 

  50. Lang SI, Cornelissen JHC, Hölzer A, Ter Braak CJF, Ahrens M, Callaghan TV, Aerts R. 2009. Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: the importance of temporal, spatial and functional scales. J Ecol 97:299–310. https://doi.org/10.1111/j.1365-2745.2008.01472.x.

    Article  Google Scholar 

  51. Larmola T, Bubier JL, Kobyljanec C, Basiliko N, Juutinen S, Humphreys E, Preston M, Moore TR. 2013. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob Change Biol 19:3729–39. https://doi.org/10.1111/gcb.12328.

    Article  Google Scholar 

  52. Leclair M, Whittington P, Price J. 2015. Hydrological functions of a mine-impacted and natural peatland-dominated watershed, James Bay Lowland. J Hydrol Reg Stud 4:732–47. https://doi.org/10.1016/j.ejrh.2015.10.006.

    Article  Google Scholar 

  53. Legendre P. 2005. Species associations: the Kendall coefficient of concordance revisited. J Agric Biol Environ Stat 10:226. https://doi.org/10.1198/108571105X46642.

    Article  Google Scholar 

  54. Leppälä M, Kukko-Oja K, Laine J, Tuittila ES. 2008. Seasonal dynamics of CO2 exchange during primary succession of boreal mires as controlled by phenology of plants. Écoscience 15:460–71. https://doi.org/10.2980/15-4-3142.

    Article  Google Scholar 

  55. Letts MG, Roulet NT, Comer NT, Skarupa MR, Verseghy DL. 2000. Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos Ocean 38:141–60. https://doi.org/10.1080/07055900.2000.9649643.

    Article  Google Scholar 

  56. Loheide SP, Butler JJ, Gorelick SM. 2005. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour Res 41:1–14. https://doi.org/10.1029/2005WR003942.

    Article  Google Scholar 

  57. Loheide SP. 2008. A method for estimating sub-daily evapotranspiration of shallow groundwater using diurnal water table fluctuations. Ecohydrology 1:59–66. https://doi.org/10.1002/eco.7.

    Article  Google Scholar 

  58. Loheide SP, Deitchman RS, Cooper DJ, Wolf EC, Hammersmark CT, Lundquist JD. 2009. A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA. Hydrogeol J 17:229–46. https://doi.org/10.1007/s10040-008-0380-4.

    Article  Google Scholar 

  59. Malhotra A, Roulet NT, Wilson P, Giroux-Bougard X, Harris LI. 2016. Ecohydrological feedbacks in peatlands: an empirical test of the relationship among vegetation, microtopography and water table. Ecohydrology 9:1346–57. https://doi.org/10.1002/eco.1731.

    Article  Google Scholar 

  60. Malmer N, Wallén B. 1999. The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium. Ecography 22:736–50. https://doi.org/10.1111/j.1600-0587.1999.tb00523.x.

    Article  Google Scholar 

  61. McCarter CPR, Price JS. 2017. Experimental hydrological forcing to illustrate water flow processes of a subarctic ladder fen peatland. Hydrol Process 31:1578–89. https://doi.org/10.1002/hyp.11127.

    Article  Google Scholar 

  62. Morris PJ, Belyea LR, Baird AJ. 2011. Ecohydrological feedbacks in peatland development: a theoretical modelling study. J Ecol 99:1190–201. https://doi.org/10.1002/eco.191.

    Article  Google Scholar 

  63. Nungesser MK. 2003. Modelling microtopography in boreal peatlands: hummocks and hollows. Ecol Model 165:175–207. https://doi.org/10.1016/S0304-3800(03)00067-X.

    Article  Google Scholar 

  64. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos PM, Stevens HH, Szoecs E, Wagner H. 2016. Vegan: community ecology package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan.

  65. Packalen MS, Finkelstein SA, McLaughlin JW. 2014. Carbon storage and potential methane production in the Hudson Bay Lowlands since mid-Holocene peat initiation. Nat Commun 5:4078. https://doi.org/10.1038/ncomms5078.

    CAS  Article  PubMed  Google Scholar 

  66. Packalen MS, Finkelstein SA, McLaughlin JW. 2016. Climate and peat type in relation to spatial variation of the peatland carbon mass in the Hudson Bay Lowlands, Canada. J Geophys Res G Biogeosci 121:104–1117. https://doi.org/10.1002/2015JG002938.

    CAS  Article  Google Scholar 

  67. Pelletier L, Garneau M, Moore TR. 2011. Variation in CO2 exchange over three summers at microform scale in a boreal bog, Eastmain region, Quebec, Canada. J Geophys Res Biogeosci 116:G03019. https://doi.org/10.1029/2011JG001657.

    CAS  Article  Google Scholar 

  68. Quinton WL, Roulet NT. 1998. Spring and summer runoff hydrology of a subarctic patterned wetland. Arct Alp Res 30:285–94. https://doi.org/10.2307/1551976.

    Article  Google Scholar 

  69. R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  70. Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J. 2004a. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–9. https://doi.org/10.1126/science.1101867.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Rietkerk M, Dekker SC, Wassen MJ, Verkroost AWM, Bierkens MFP. 2004b. A putative mechanism for bog patterning. Am Nat 163:699–708. https://doi.org/10.1086/383065.

    CAS  Article  PubMed  Google Scholar 

  72. Riley JL. 2003. Flora of the Hudson Bay Lowland and its postglacial origins. Ottawa: NRC Press.

    Google Scholar 

  73. Riley JL. 2011. Wetlands of the Ontario Hudson Bay Lowland: a regional overview. Nature Conservancy of Canada, Toronto, Ontario.

  74. Romanov VV. 1961. Hydrophysics of bogs [Gidrofizika bolot]. Israel Program for Scientific Translations, Jerusalem, 1968.

  75. Siegel DI, Glaser PH. 1987. Groundwater flow in a bog-fen complex, Lost River peatland, northern Minnesota. J Ecol 75:743–54. https://doi.org/10.2307/2260203.

    Article  Google Scholar 

  76. Sjörs H. 1959. Bogs and fens in the Hudson Bay Lowlands. Arctic 12:2–19. https://doi.org/10.14430/arctic3709.

    Article  Google Scholar 

  77. Sjörs H. 1963. Bogs and fens of the Attawapiskat River, northern Ontario. Natl Mus Canada Bull 186:45–133.

    Google Scholar 

  78. Small E. 1972. Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–33. https://doi.org/10.1139/b72-289.

    CAS  Article  Google Scholar 

  79. Strack M, Waddington JM, Rochefort L, Tuittila ES. 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res Biogeosci 111:1–10. https://doi.org/10.1029/2005JG000145.

    CAS  Article  Google Scholar 

  80. Swanson DK, Grigal DF. 1988. A simulation model of mire patterning. Oikos 53:309–14. https://doi.org/10.2307/3565529.

    Article  Google Scholar 

  81. Swanson DK, Grigal DF. 1991. Biomass, structure, and trophic environment of peatland vegetation in Minnesota. Wetlands 11:279–302. https://doi.org/10.1007/BF03160854.

    Article  Google Scholar 

  82. Tarnocai C. 2006. The effect of climate change on carbon in Canadian peatlands. Glob Planet Change 53:222–32. https://doi.org/10.1016/j.gloplacha.2006.03.012.

    Article  Google Scholar 

  83. Ulanowski TA, Branfireun BA. 2013. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada. Sci Total Environ 454–455:211–18. https://doi.org/10.1016/j.scitotenv.2013.02.087.

    CAS  Article  PubMed  Google Scholar 

  84. Ulanowski TA. 2014. Hydrology and biogeochemistry of a bog-fen-tributary complex in the Hudson Bay Lowlands, Ontario, Canada. MSc Thesis, University of Western Ontario.

  85. Vitt D, Chee WL. 1990. The relationships of vegetation to surface water chemistry and peat chemistry in fens of Alberta, Canada. Vegetatio 89:87–106. https://doi.org/10.1007/BF00032163.

    Article  Google Scholar 

  86. Wallén AB, Malmer N, Wallen B, Maimer N. 1988. Productivity and relative rate of photosynthesis of Sphagnum at different water levels on a South Swedish peat bog. Holarct Ecol 11:70–6. https://www.jstor.org/stable/3682591.

  87. Wang M, Larmola T, Murphy MT, Moore TR, Bubier JL. 2016. Stoichiometric response of shrubs and mosses to long-term nutrient (N, P and K) addition in an ombrotrophic peatland. Plant Soil 400:403–16. https://doi.org/10.1007/s11104-015-2744-6.

    CAS  Article  Google Scholar 

  88. Wang MJ, Talbot J, Moore TR. 2018. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland. Sci Total Environ 621:1255–63. https://doi.org/10.1016/j.scitotenv.2017.10.103.

    CAS  Article  PubMed  Google Scholar 

  89. Warren RK, Pappas C, Helbig M, Chasmer LE, Berg AA, Baltzer JL, Quinton WL, Sonnentag O. 2018. Minor contribution of overstorey transpiration to landscape evapotranspiration in boreal permafrost peatlands. Ecohydrology 11:1975. https://doi.org/10.1002/eco.1975.

    Article  Google Scholar 

  90. Watras CJ, Morrison KA, Rubsam JL, Buffam I. 2017. Estimates of evapotranspiration from contrasting Wisconsin peatlands based on diel water table oscillations. Ecohydrology 10:1834. https://doi.org/10.1002/eco.1834.

    Article  Google Scholar 

  91. Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT. 2000. Response of bog and fen plant communities to warming and water table manipulations. Ecology 81:3464–78. https://doi.org/10.1890/08-0279.1.

    Article  Google Scholar 

  92. White WN. 1932. Water-supply paper 659-A. A method of estimating groundwater supplies based on discharge by plants and evaporation from soil. Washington: U.S. Geological Survey. p 105.

  93. Whittington P, Strack M, van Haarlem R, Kaufman S, Stoesser P, Maltez J, Price JS, Stone M. 2007. The influence of peat volume change and vegetation on the hydrology of a kettle-hole wetland in Southern Ontario, Canada. Mires Peat 2:9.

    Google Scholar 

  94. Wilson D, Alm J, Riutta T, Laine J, Byrne KA, Farrell EP, Tuittila ES. 2007. A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland vascular plant communities. Plant Ecol 190:37–51. https://doi.org/10.1007/s11258-006-9189-1.

    Article  Google Scholar 

  95. Wilson P. 2012. The relationship among microtopographical variation, water table depth and biogeochemistry in an ombrotrophic bog. MSc Thesis, McGill University, Montreal, Canada.

  96. Wood ME, Macrae ML, Strack M, Price JS, Osko TJ, Petrone RM. 2015. Spatial variation in nutrient dynamics among five different peatland types in the Alberta oil sands region. Ecohydrology 9:688–99. https://doi.org/10.1002/eco.1667.

    Article  Google Scholar 

  97. Yu Z, Beilman DW, Frolking S, MacDonald GM, Roulet NT, Camill P, Charman DJ. 2011. Peatlands and their role in the global carbon cycle. Eos Trans Am Geophys Union 92:97. https://doi.org/10.1029/2011EO120001.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Annie Schreck, Isobel Phoebus, Annalise Miska, Stephanie Cotnoir, David Blair, Paul Wilson, Sofie Hojabri, and Tatjana Živković for their assistance in both the field and laboratory; Mike Dalva and Aaron Craig for assistance with laboratory analyses; and Dr. Koreen Millard for assistance with the DGPS surveys. The authors gratefully acknowledge the support of the Attawapiskat First Nation and Mushkegowuk Council in establishing the research sites and for sharing traditional knowledge of the Hudson Bay Lowland. We are also grateful for logistical support from De Beers Canada Victor Mine and for the support of students and staff from other universities, especially Dr. Brian Branfireun and Dr. Elyn Humphreys, operating in this remote field location. We thank two anonymous reviewers whose comments improved the clarity of the manuscript. This research was funded by an NSERC Strategic Grant (STGP-397297-10) awarded to N.T.R. and others, and with generous support awarded to L.I.H. from the W. Garfield Weston Foundation Fellowship for Northern Conservation, administered by Wildlife Conservation Society (WCS) Canada.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lorna I. Harris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author Contributions

LIH designed the methodology, collected and analysed the data, and wrote the manuscript. NTR and TRM contributed to the methodology and data interpretation. All authors contributed critically to the draft manuscript and gave final approval for publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 355 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harris, L.I., Roulet, N.T. & Moore, T.R. Mechanisms for the Development of Microform Patterns in Peatlands of the Hudson Bay Lowland. Ecosystems 23, 741–767 (2020). https://doi.org/10.1007/s10021-019-00436-z

Download citation

Keywords

  • peatlands
  • surface patterns
  • microtopography
  • peat accumulation
  • structuring mechanisms
  • ecohydrological feedbacks
  • nutrient accumulation
  • water ponding
  • Hudson Bay Lowland