Skip to main content

Tall Shrubs Mediate Abiotic Conditions and Plant Communities at the Taiga–Tundra Ecotone

Abstract

Shrub expansion has occurred across much of the arctic tundra over the past century. Increasing dominance of woody vegetation is expected to have global influences on climate patterns and lead to local changes in hydrological function and nutrient cycling. Changing abiotic conditions associated with shrubs will likely alter the relative fitness of neighbouring plants resulting in distinct community composition. Here, we use an extensive set of paired abiotic and biotic data to investigate the capacity for Alnus alnobetula (green alder) patches to modify the habitat of the local plant community at the taiga–tundra ecotone of the Northwest Territories, Canada. Plots were established across topographic positions in ten alder patches and adjacent, alder-free tundra. Habitat corresponded to the strongest gradient of among-site variation in abiotic measures and plant community composition, indicating that alder patch growing conditions were distinct from those of alder-free tundra. Slope position was generally unimportant in determining environmental conditions. Alder patches changed the vertical structure of the understory by increasing the maximum height of birch. Tall shrubs also decreased the richness of tundra specialists, suggesting that these species face competitive pressures from shrub expansion at the southern edge of their ranges. Our findings demonstrate that tall shrub patches can substantially modify their local environment in taiga–tundra ecotone systems, altering available habitat and acting as niche constructors for the local plant community. These habitats will therefore be important to consider in regional predictions of hydrology, nutrient cycling, and biodiversity as shrubs continue to expand across the arctic.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  • Aiken SG, Dallwitz MJ, Consaul LL, McJannet CL, Boles RL, Argus GW, Gillett JM, Scott PJ, Elven R, LeBlanc MC, Gillespie LJ, Brysting AK, Solstad H, Harris JG. 2007. Flora of the Canadian Arctic Archipelago: descriptions, illustrations, identification, and information retrieval. NRC Research Press, National Research Council of Canada, Ottawa. http://nature.ca/aaflora/data. Accessed on September 8, 2018.

  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  • Berg B, Staaf H. 1980. Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition. Ecol Bull 32:373–90.

    CAS  Google Scholar 

  • Billings W. 1987. Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Alp Res 19:357–65.

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, Kononov AV, Maximov TC, Berendse F. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob Change Biol 16:1296–305. https://doi.org/10.1111/j.1365-2486.2009.02110.x.

    Article  Google Scholar 

  • Blok D, Weijers S, Welker JM, Cooper EJ, Michelsen A, Löffler J, Elberling B. 2015. Deepened winter snow increases stem growth and alters stem δ13 C and δ15 N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra. Environ Res Lett 10:1–14. https://doi.org/10.1088/1748-9326/10/4/044008.

    CAS  Article  Google Scholar 

  • Bråthen KA, Ravolainen VT. 2015. Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. J Ecol 103:701–13. https://doi.org/10.1111/1365-2745.12380.

    Article  Google Scholar 

  • Bret-Harte MS, Shaver GR, Zoerner JP, Johnstone JF, Wagner JL, Chavez AS, Gunkelman RFIV, Lippert SC, Laundre JA. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82:18–32. https://doi.org/10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2.

    Article  Google Scholar 

  • Buckeridge K, Zufelt E, Chu H, Grogan P. 2010. Soil nitrogen cycling rates in low arctic shrub tundra are enhanced by litter feedbacks. Plant Soil 330:407–21.

    CAS  Article  Google Scholar 

  • Bühlmann T, Körner C, Hiltbrunner E. 2016. Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 19:968–85. https://doi.org/10.1007/s10021-016-9979-9.

    CAS  Article  Google Scholar 

  • Chapin FS, Shaver G, Giblin A, Nadelhoffer KJ, Laundre JA. 1995. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711.

    Article  Google Scholar 

  • Christiansen CT, Lafreniére MJ, Henry GHR, Grogan P. 2018. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Glob Change Biol . https://doi.org/10.1111/gcb.14084.

    Article  Google Scholar 

  • Cody W. 2000. Flora of the Yukon Territory. 2nd edn. Ottawa: NRC Research Press.

    Google Scholar 

  • Cornelissen JHC, Van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RSP, Alatalo J, Stuart Chapin F, Gerdol R, Gudmundsson J, Gwynn-Jones D, Hartley AE, M.O.L. Team. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–27. https://doi.org/10.1111/j.1461-0248.2007.01051.x.

    Article  PubMed  Google Scholar 

  • Densmore RV. 2005. Succession on subalpine placer mine spoil: effects of revegetation with Alnus viridis, Alaska, U.S.A. Arct Antarct Alp Res 37:297–303. https://doi.org/10.1657/1523-0430(2005)037[0297:SOSPMS]2.0.CO;2.

    Article  Google Scholar 

  • Endrizzi S, Quinton WL, Marsh P. 2011. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra. Cryosphere Discus 5:367–400. https://doi.org/10.5194/tcd-5-367-2011.

    Article  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JH, Day TA, Fosaa AM, Gould WA, Grétarsdóttir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jónsdóttir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenström A, Tolvanen A, Totland O, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–75. https://doi.org/10.1111/j.1461-0248.2011.01716.x.

    Article  PubMed  Google Scholar 

  • Euskirchen ES, Bennett AP, Breen AL, Genet H, Lindgren MA, Kurkowski TA, McGuire AD, Rupp TS. 2016. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada. Environ Res Lett 11:105003. https://doi.org/10.1088/1748-9326/11/10/105003.

    CAS  Article  Google Scholar 

  • Flora of North America Editorial Committee, eds. 1993 + . Flora of North America North of Mexico. 20+ vols. New York and Oxford.

  • Fox J, Weisberg S. 2011. An R companion to applied regression, Second Ediition. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Gill HK, Lantz TC, Neill BO, Kokelj SV. 2014. Cumulative impacts and feedbacks of a gravel road on shrub tundra ecosystems in the Peel Plateau, Northwest Territories, Canada. Arct Antarct Alp Res 46:947–61.

    Article  Google Scholar 

  • Giardina C, Huffman S, Binkley D, Caldwel B. 1995. Alders increase soil phosphorus availability in a Douglas-fir plantation. Can J For Res 25(10):1652–7.

    Article  Google Scholar 

  • Hiltbrunner E, Aerts R, Bühlmann T, Huss-Danell K, Magnusson B, Myrold DD, Reed SC, Sigurdsson BD, Körner C. 2014. Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176:11–24. https://doi.org/10.1007/s00442-014-2991-x.

    Article  PubMed  Google Scholar 

  • Hobbie S. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66(4):503–22.

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J 50:346–63.

    Article  Google Scholar 

  • Johnson D, Kershaw L, MacKinnon A. 2009. Plants of the Western Forest; Alberta Saskatchewan and Manitoba Boreal and Aspen Parkland. Edmonton: Lone Pine Publishing.

    Google Scholar 

  • Jonasson S. 1983. Nutrient content and dynamics in north Swedish shrub tundra areas. Holarct Ecol 6:295–304.

    CAS  Google Scholar 

  • Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol 4:1070–5. https://doi.org/10.1111/2041-210X.12097.

    Article  Google Scholar 

  • King D. 1990. The adaptive significance of tree height. Am Nat 135:809–28.

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff P, Bojesen R. 2016. lmerTest: tests in linear mixed effects models. R package version 2.0-33. https://CRAN.R-project.org/package=lmerTest.

  • Lantz TC, Gergel SE, Henry GHR. 2010. Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada. J Biogeogr 37:1597–610. https://doi.org/10.1111/j.1365-2699.2010.02317.x.

    Article  Google Scholar 

  • Lantz TC, Marsh P, Kokelj SV. 2013. Recent shrub proliferation in the Mackenzie Delta uplands and microclimatic implications. Ecosystems 16:47–59. https://doi.org/10.1007/s10021-012-9595-2.

    Article  Google Scholar 

  • Lawrence DM, Swenson SC. 2011. Permafrost response to increasing Arctic shrub abundance depends on the relative influence of shrubs on local soil cooling versus large-scale climate warming. Environ Res Lett 6:045504. https://doi.org/10.1088/1748-9326/6/4/045504.

    Article  Google Scholar 

  • Le S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01.

    Article  Google Scholar 

  • Lütz C. 2010. Cell physiology of plants growing in cold environments. Protoplasma 244:53–73. https://doi.org/10.1007/s00709-010-0161-5.

    CAS  Article  PubMed  Google Scholar 

  • Marsh P, Bartlett P, MacKay M, Pohl S, Lantz T. 2010. Snowmelt energetics at a shrub tundra site in the western Canadian Arctic. Hydrol Process 24(25):3603–20.

    Article  Google Scholar 

  • McNickle GG, Lamb EG, Lavender M, Cahill JF, Schamp BS, Siciliano SD, Condit R, Hubbell SP, Baltzer JL. 2018. Checkerboard score-area relationships reveal spatial scales of plant community structure. Oikos 127:415–26. https://doi.org/10.1111/oik.04620.

    Article  Google Scholar 

  • Moffat ND, Lantz TC, Fraser RH, Olthof I. 2016. Recent vegetation change (1980–2013) in the tundra ecosystems of the Tuktoyaktuk Coastlands, NWT, Canada. Arct Antarct Alp Res 48:581–97. https://doi.org/10.1657/AAAR0015-063.

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Siegwart Collier L, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hyles L, Elmensdorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. https://doi.org/10.1088/1748-9326/6/4/045509.

    Article  Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, JØrgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–91. https://doi.org/10.1038/nclimate2697.

    Article  Google Scholar 

  • Naito AT, Cairns DM. 2011. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics. Environ Res Lett 6:1–8. https://doi.org/10.1088/1748-9326/6/4/045506.

    Article  Google Scholar 

  • Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H. 2017. vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan.

  • Porslid A, Cody W. 1980. Vascular plants of Continental Northwest Territories, Canada. Ottawa: National Museum of Natural Sciences.

    Book  Google Scholar 

  • R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/. Vienna, Austria.

  • Ropars P, Lévesque E, Boudreau S. 2015. Shrub densification heterogeneity in subarctic regions: the relative influence of historical and topographic variables. Écoscience 22:1–13. https://doi.org/10.1080/11956860.2015.1107262.

    Article  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JM. 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol and Biochem 36:217–27. https://doi.org/10.1016/j.soilbio.2003.09.008.

    CAS  Article  Google Scholar 

  • Starr G, Oberbauer SF. 2003. Photosynthesis of arctic evergreens under snow: implications for tundra ecosystems. Ecology 84:1415–20. https://doi.org/10.1890/02-3154.

    Article  Google Scholar 

  • Sturm M. 2005. Changing snow and shrub conditions affect albedo with global implications. J Geophys Res . https://doi.org/10.1029/2005JG000013.

    Article  Google Scholar 

  • Sturm M, McFadden J, Liston GE, Chapin FS, Racine CH, Holmgren J. 2001. Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14:336–44.

    Article  Google Scholar 

  • Swann AL, Fung IY, Levis S, Bonan GB, Doney SC. 2010. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc Natl Acad of Sci U S A 107:1295–300. https://doi.org/10.1073/pnas.0913846107.

    Article  Google Scholar 

  • Tape K, Sturm M, Racine C. 2006. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob Change Biol 12:686–702. https://doi.org/10.1111/j.1365-2486.2006.01128.x.

    Article  Google Scholar 

  • Tape K, Lord R, Marshall HP, Ruess R. 2010. Snow-mediated ptarmigan browsing and shrub expansion in arctic Alaska. Ecoscience 17(2):186–93.

    Article  Google Scholar 

  • Tape KD, Hallinger M, Welker JM, Ruess RW. 2012. Landscape heterogeneity of shrub expansion in arctic Alaska. Ecosystems 15:711–24. https://doi.org/10.1007/s10021-012-9540-4.

    CAS  Article  Google Scholar 

  • Vankoughnett MR, Grogan P. 2014. Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: a 2 year test of the snow-shrub hypothesis. Biogeochemistry 118:291–306. https://doi.org/10.1007/s10533-013-9930-5.

    CAS  Article  Google Scholar 

  • Vankoughnett MR, Grogan P. 2016. Plant production and nitrogen accumulation above- and belowground in low and tall birch tundra communities: the influence of snow and litter. Plant Soil 408:195–210. https://doi.org/10.1007/s11104-016-2921-2.

    CAS  Article  Google Scholar 

  • Walker D. 2000. Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography. Glob Change Biol 6:19–34.

    Article  Google Scholar 

  • Walker M, Wahren C, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci U S A 103:1342–6. https://doi.org/10.1073/pnas.0503198103.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wickham H. 2009. ggplot2. New York, NY: Springer.

    Book  Google Scholar 

  • Wrona E. 2016. Evaluation of novel remote sensing techniques for soil moisture monitoring in the western Canadian Arctic. University of Guelph. MSc Thesis.

Download references

Acknowledgements

We are grateful to K. Black, T. Giguere, J. Rabley, A. Sniderhan, and E. Way-Nee for their indispensable assistance in the field. We extend additional thanks to T. Lantz and P. Marsh for their thoughts on original study design and K. Black, N. Day, A. Sniderhan, J. Paul, and K. Standen for discussions regarding analysis and results. We also gratefully acknowledge the Wilfrid Laurier University—Government of the NWT Partnership Agreement and the logistical support of P. Marsh and the Trail Valley Creek Research Station team. CW was supported by Ontario Graduate Scholarships and an NSERC PGS scholarship. Funding for field research was provided by Polar Knowledge Canada, ArcticNet, Northern Scientific Training Program, Polar Continental Shelf Program, and the NSERC Changing Cold Regions Network. This study fell under Aurora Research Institute research licence number 16017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory A. Wallace.

Additional information

Author’s Contribution

CAW collected the data for this study. JLB and CAW contributed equally to the study design, analysis, and writing.

We have used the data from https://doi.org/10.5683/SP2/F4PQRY.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1777 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wallace, C.A., Baltzer, J.L. Tall Shrubs Mediate Abiotic Conditions and Plant Communities at the Taiga–Tundra Ecotone. Ecosystems 23, 828–841 (2020). https://doi.org/10.1007/s10021-019-00435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00435-0

Keywords

  • Alnus alnobetula
  • biogeography
  • community composition
  • ecotone
  • green alder
  • niche construction
  • shrub expansion