Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes

Abstract

Phenology studies mostly focus on variation across time or landscapes. However, phenology can vary at fine spatial scales, and these differences may be as important as long-term change from climate warming. We used high-frequency “PhenoCam” data to examine phenology of Spartina alterniflora, a foundation species native to salt marshes on the US East and Gulf coasts, and a common colonizer elsewhere. We examined phenology across three microhabitats from 2013 to 2017 and used this information to create the first spring green-up model for S. alterniflora. We then compared modern spatial variation to that exhibited over a 60-year climate record. Marsh interior plants initiated spring growth 17 days earlier than channel edge plants and spent 35 days more in the green-up phenophase and 25 days less in the maturity phenophase. The start of green-up varied by 17 days among 3 years. The best spring green-up model was based on winter soil total growing degree days. Across microhabitats, spring green-up differences were caused by small elevation changes (15 cm) that drove soil temperature variation of 0.8°C. Preliminary evidence indicated that high winter belowground biomass depletion triggered early green-up. Long-term change was similar: winter soil temperatures warmed 1.7 ± 0.3°C since 1958, and green-up advanced 11 ± 6 days, whereas contemporary microhabitat differences were 17 ± 4 days. Incorporating local spatial variation into plant phenology models may provide an early warning of climate vulnerability and improve understanding of ecosystem-scale productivity. Microscale phenology variation likely exists in other systems and has been unappreciated.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Alber M, O’Connell JL. 2019. Elevation drives gradients in surface soil temperature within salt marshes. Geophysical Research Letters 46:5313–22.

    Google Scholar 

  2. Arnold CY. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticultural Science 74:430–45.

    Google Scholar 

  3. Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S. 2004. Responses of spring phenology to climate change. New Phytologist 162:295–309.

    Google Scholar 

  4. Bordese M, Alini W. 2013. biOps: Image processing and analysis.

  5. Cannell MGR, Smith RI. 1983. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology 20:951–63.

    Google Scholar 

  6. Chuine I, de Cortazar-Atauri IG, Kramer K, Hänninen H. 2013. Plant development models. Phenology: an integrative environmental science. Dordrecht: Springer. p 275–93.

    Google Scholar 

  7. Cook RD, Weisberg S. 1982. Residuals and influence in regression. New York: Chapman and Hall.

    Google Scholar 

  8. De Réaumur R. 1735. Observation du thérmomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’Isle de France, à Alger et en quelquesunes de nos isles de l’Amérique. Memoires de l’Académie des Sciences de Paris.

  9. Dunne JA, Harte J, Taylor KJ. 2003. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecological Monographs 73:69–86.

    Google Scholar 

  10. Gallagher JL. 1983. Seasonal patterns in recoverable underground reserves in Spartina alterniflora Loisel. American Journal of Botany 70:212–15.

    Google Scholar 

  11. Gifford RM. 2003. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biol 30:171–86.

    Google Scholar 

  12. Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC. 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology 2:169–82.

    Google Scholar 

  13. Gu L, Post WM, Baldocchi D, Black TA, Verma SB, Vesala T, Wofsy SC. 2003. Phenology of vegetation photosynthesis. Phenology: an integrative environmental science. Tasks for Vegetation Science. Dordrecht: Springer. p 467–85.

    Google Scholar 

  14. Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. 2006. Global temperature change. Proceedings of the National Academy of Sciences 103:14288–93.

    CAS  Google Scholar 

  15. Hänninen H. 1987. Effects of temperature on dormancy release in woody plants. Silva Fennica 21(3):279–99.

    Google Scholar 

  16. Hladik C, Schalles J, Alber M. 2013. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sensing of Environment 139:318–30.

    Google Scholar 

  17. Hunter AF, Lechowicz MJ. 1992. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology 29:597–604.

    Google Scholar 

  18. Jung Y, Burd A. 2017. Seasonal changes in above- and below-ground non-structural carbohydrates (NSC) in Spartina alterniflora in a marsh in Georgia, USA. Aquatic Botany 140:13–22.

    CAS  Google Scholar 

  19. Kartesz JT. 2015. The Biota of North America Program (BONAP). Chapel Hill, NC, USA: North American Plant Atlas. http://bonap.net/napa.

  20. Kikuzawa K. 1995. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany 73:158–63.

    Google Scholar 

  21. Kirwan ML, Guntenspergen GR. 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology 100:764–70.

    Google Scholar 

  22. Kirwan ML, Megonigal JP. 2013. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60.

    CAS  PubMed  Google Scholar 

  23. Klosterman ST, Hufkens K, Gray JM, Melaas E, Sonnentag O, Lavine I, Mitchell L, Norman R, Friedl MA, Richardson AD. 2014. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11:4305–20.

    Google Scholar 

  24. Laidler KJ. 1984. The development of the Arrhenius equation. Journal of Chemical Education 61:494.

    CAS  Google Scholar 

  25. Mendelssohn IA, Morris JT. 2002. Eco-physiological controls on the productivity of Spartina alterniflora Loisel. In: Weinstein MP, Kreeger DA, Eds. Concepts and controversies in tidal marsh ecology. Netherlands: Springer. p 59–80.

    Google Scholar 

  26. Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.

    Google Scholar 

  27. Mudd SM, Howell SM, Morris JT. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82:377–89.

    CAS  Google Scholar 

  28. Murray MB, Cannell MGR, Smith RI. 1989. Date of budburst of fifteen tree species in britain following climatic warming. Journal of Applied Ecology 26:693–700.

    Google Scholar 

  29. Nyman JA, Delaune RD, Roberts HH, Patrick WH. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96:269–79.

    Google Scholar 

  30. O’Connell JL, Alber M. 2016. A smart classifier for extracting environmental data from digital image time-series: applications for PhenoCam data in a tidal salt marsh. Environmental Modelling & Software 84:134–9.

    Google Scholar 

  31. O’Donnell JPR, Schalles JF. 2016. Examination of abiotic drivers and their influence on Spartina alterniflora biomass over a twenty-eight year period using Landsat 5 TM satellite imagery of the central Georgia coast. Remote Sensing 8:477.

    Google Scholar 

  32. Pennings SC, Bertness MD. 2001. Salt marsh communities. In: Hay ME, Gaines SD, Bertness MD, Eds. Marine community ecology. Sunderland: Sinauer Associates. p 550.

    Google Scholar 

  33. Peterson PM, Romaschenko K, Arrieta YH, Saarela JM. 2014a. A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63:1212–43.

    Google Scholar 

  34. Peterson PM, Romaschenko K, Arrieta YH, Saarela JM. 2014b. Proposal to conserve the name Sporobolus against Spartina, Crypsis, Ponceletia, and Heleochloa (Poaceae: Chloridoideae: Sporobolinae). Taxon 63:1373–4.

    Google Scholar 

  35. Primack RB, Ibáñez I, Higuchi H, Lee SD, Miller-Rushing AJ, Wilson AM, Silander JA. 2009. Spatial and interspecific variability in phenological responses to warming temperatures. Biological Conservation 142:2569–77.

    Google Scholar 

  36. Richardson AD, Jenkins JP, Braswell BH, Hollinger DY, Ollinger SV, Smith M-L. 2007. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 152:323–34.

    PubMed  Google Scholar 

  37. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156–73.

    Google Scholar 

  38. Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149:369–99.

    CAS  Google Scholar 

  39. Schwartz MD, Ahas R, Aasa A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology 12:343–51.

    Google Scholar 

  40. Schwartz MD, Ed. 2013. Phenology: an integrative environmental science. Dordrecht: Springer.

    Google Scholar 

  41. Seneca ED. 1974. Germination and seedling response of Atlantic and Gulf Coasts populations of Spartina alterniflora. American Journal of Botany 61:947–56.

    Google Scholar 

  42. Somers GF, Grant D. 1981. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel. and the likelihood of cross pollination. American Journal of Botany 68:6–9.

    Google Scholar 

  43. Stanton ML, Galen C, Shore J. 1997. Population structure along a steep environmental gradient: consequences of flowering time and habitat variation in the Snow Buttercup, Ranunculus Adoneus. Evolution 51:79–94.

    CAS  PubMed  Google Scholar 

  44. Strong DR, Ayres DA. 2016. Control and consequences of Spartina spp. invasions with focus upon San Francisco Bay. Biological Invasions 18:2237–46.

    Google Scholar 

  45. Swanson KM, Drexler JZ, Schoellhamer DH, Thorne KM, Casazza ML, Overton CT, Callaway JC, Takekawa JY. 2014. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts 37:476–92.

    Google Scholar 

  46. Travis SE, Hester MW. 2005. A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology 93:417–30.

    Google Scholar 

  47. USDA, NRCS. 2019. The PLANTS Database. National Plant Data Team.

  48. USGCRP. 2017. Climate science special report. In: Wuebbles DJ, Fahey DW, Hibbard KA, Dokken DJ, Stewart BC, Maycock TK, Eds. Washington D.C.: U.S. Global Change Research Program.

  49. Vegis A. 1964. Dormancy in higher plants. Annual Review of Plant Physiology 15:185–224.

    CAS  Google Scholar 

  50. Voss CM, Christian RR, Morris JT. 2013. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Marine Biology 160:181–94.

    PubMed  Google Scholar 

  51. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature 416:389–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zelikova TJ, Williams DG, Hoenigman R, Blumenthal DM, Morgan JA, Pendall E. 2015. Seasonality of soil moisture mediates responses of ecosystem phenology to elevated CO2 and warming in a semi-arid grassland. Journal of Ecology 103:1119–30.

    CAS  Google Scholar 

  53. Zhang X, Friedl MA, Schaaf CB, Strahler AH. 2004. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology 10:1133–45.

    Google Scholar 

  54. Zheng S, Shao D, Asaeda T, Sun T, Luo S, Cheng M. 2016. Modeling the growth dynamics of Spartina alterniflora and the effects of its control measures. Ecological Engineering 97:144–56.

    Google Scholar 

Download references

Acknowledgements

The Georgia Coastal Ecosystems LTER is supported by the National Science Foundation (OCE12-37140). We thank Wade Sheldon, Jacob Shalack and the National PhenoCam Network for managing and curating the GCE PhenoCam, and the GCE field crew for collecting belowground biomass data (particularly Caroline Reddy, Timothy Montgomery, Dontrece Smith, and Alyssa Peterson). We thank the editor and reviewers for helpful comments that improved the manuscript. This is contribution 1076 of the University of Georgia Marine Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jessica L. O’Connell.

Additional information

Author’s Contribution

JLO designed the study, analyzed the data, wrote the paper; MA designed the study, contributed to the paper writing, provided funding for the study; SCP designed the study, contributed to the paper writing, provided funding for the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10021_2019_418_MOESM1_ESM.pdf

Supplementary material 1 (PDF 2161 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Connell, J.L., Alber, M. & Pennings, S.C. Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes. Ecosystems 23, 498–510 (2020). https://doi.org/10.1007/s10021-019-00418-1

Download citation

Keywords

  • digital camera imagery
  • global climate change
  • coastal tidal marsh
  • Georgia Coastal Ecosystems LTER
  • microhabitat
  • PhenoCam
  • Spartina alterniflora
  • Sporobolus alterniflorus
  • soil temperature gradient
  • spring green-up