Skip to main content
Log in

Dynamics of Ecosystem Water Use Efficiency in Citrus Orchards of Central India Using Eddy Covariance and Landsat Measurements

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Accurate quantification of water use efficiency (WUE) and characterization of its variability across multiple time scales can help to initiate appropriate management measures for cropland ecosystems in response to natural and anthropogenic changes. This study is aimed to understand the diurnal and seasonal patterns in WUE and its dominant controls in the citrus orchards of central India. We used eddy covariance measurements to estimate the evapotranspiration (ET) and gross primary product (GPP) fluxes from two crop cycles (2016 and 2017). On a daily scale, ET and GPP exhibited similar patterns, with peaks occurring during the fruit development stage. The daily WUE ranged from 0.22 to 3.39 g C kg−1 H2O with a mean of 1.77 g C kg−1 H2O. We observed high interseasonal variability in WUE, which emphasized the need to partition the fluxes between the growth stages. Landsat images were then acquired to characterize the spatiotemporal variability in WUE at the regional scale. Satellite-derived ET, GP and WUE (= GPP/ET) estimates were consistent with ground-based measurements (R2 > 0.80, n = 16). Eight biophysical indices derived from Landsat were then regressed with WUE estimates to see whether these indices, either independently or in combination, can explain the WUE dynamics in citrus orchards. Our results indicated that the enhanced vegetation index and soil-adjusted vegetation index are strongly related to WUE with correlation strengths greater than 0.75 at all growth stages. We then developed the constitutive relations between WUE and biophysical indices that could be utilized by water managers to improve crop water productivity in response to changing agro-climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abraha M, Gelfand I, Hamilton SK, Shao C, Su YJ, Robertson GP, Chen J. 2016. Ecosystem Water-Use Efficiency of Annual Corn and Perennial Grasslands: Contributions from Land-Use History and Species Composition. Ecosystems 19:1001–12.

    CAS  Google Scholar 

  • Ahongshangbam J, Patel NR, Kushwaha SPS, Watham T, Dadhwal VK. 2016. Estimating Gross Primary Production of a Forest Plantation Area Using Eddy Covariance Data and Satellite Imagery. J Indian Soc Remote Sens 44:895–904.

    Google Scholar 

  • Allen RG, Tasumi M, Trezza R. 2007. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J Irrig Drain Eng 133:380–94.

    Google Scholar 

  • Bastiaanssen WGM. 2000. SEBAL-based sensible and latent heat fluxes. 229:87–100.

  • Brümmer C, Black TA, Jassal RS, Grant NJ, Spittlehouse DL, Chen B, Nesic Z, Amiro BD, Arain MA, Barr AG, Bourque CPA, Coursolle C, Dunn AL, Flanagan LB, Humphreys ER, Lafleur PM, Margolis HA, McCaughey JH, Wofsy SC. 2012. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric For Meteorol 153:14–30.

    Google Scholar 

  • Consoli S, Stagno F, Roccuzzo G, Cirelli GL, Intrigliolo F. 2014. Sustainable management of limited water resources in a young orange orchard. Agric Water Manag 132:60–8.

    Google Scholar 

  • Danelichen VHM, Biudes MS, Velasque MCS, Machado NG, Gomes RSR, Vourlitis GL, Nogueira JS. 2015. Estimating of gross primary production in an Amazon-cerrado transitional forest using MODIS and landsat imagery. An Acad Bras Cienc 87:1545–64.

    PubMed  Google Scholar 

  • Dar EA, Brar AS, Singh KB. 2017. Water use and productivity of drip irrigated wheat under variable climatic and soil moisture regimes in North-West, India. Agric Ecosyst Environ 248:9–19.

    Google Scholar 

  • Dong G, Guo J, Chen J, Sun G, Gao S, Hu L, Wang Y. 2011. Effects of Spring Drought on Carbon Sequestration. Evapotranspiration and Water Use Efficiency in the Songnen Meadow Steppe in Northeast China. 224:211–24.

    Google Scholar 

  • Fan M, Shen J, Yuan L, Jiang R, Chen X, Davies WJ, Zhang F. 2012. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J Exp Bot 63:13–24.

    CAS  PubMed  Google Scholar 

  • Gitelson AA, Kaufman YJ, Merzlyak MN. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens Environ 58:289–98.

    Google Scholar 

  • Gitelson AA, Peng Y, Masek JG, Rundquist DC, Verma S, Suyker A, Baker JM, Hatfield JL, Meyers T. 2012. Remote estimation of crop gross primary production with Landsat data. Remote Sens Environ 121:404–14.

    Google Scholar 

  • Gitelson AA, Viña A, Arkebauer TJ, Rundquist DC, Keydan G, Leavitt B. 2003. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys Res Lett 30:n/a-n/a.

  • Gitelson AA, Vina A, Masek JG, Verma SB, Suyker AE. 2008. Synoptic monitoring of gross primary productivity of maize using Landsat data. Ieee Geosci Remote Sens Lett 5:133–7.

    Google Scholar 

  • Gonzalez-Dugo MP, Neale CMU, Mateos L, Kustas WP, Prueger JH, Anderson MC, Li F. 2009. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric For Meteorol 149:1843–53.

    Google Scholar 

  • Hamilton SK, Hussain MZ, Bhardwaj AK, Basso B, Robertson GP. 2015. Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environ Res Lett 10(6):064015. https://doi.org/10.1088/1748-9326/10/6/064015.

    Article  CAS  Google Scholar 

  • Heinsch FA, Zhao M, Running SW, Kimball JS, Nemani RR, Davis KJ, Bolstad PV, Cook BD, Desai AR, Ricciuto DM, Law BE, Oechel WC, Kwon H, Luo H, Wofsy SC, Dunn AL, Munger JW, Baldocchi DD, Xu L, Hollinger DY, Richardson AD, Stoy PC, Siqueira MBS, Monson RK, Burns SP, Flanagan LB. 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans Geosci Remote Sens 44:1908–23.

    Google Scholar 

  • Huete AR. 1988. A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309.

    Google Scholar 

  • Huete AR, Liu HQ, Batchily K, van Leeuwen WJ. 1997. A comparison of vegetation indices over a Global set of TM images for EO -MODIS. Remote Sens Environ 59:440–51.

    Google Scholar 

  • Ito A, Inatomi M. 2012. Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty. Biogeosciences 9:759–73.

    CAS  Google Scholar 

  • Jackson RD. 1986. Remote Sensing of Biotic and Abiotic Plant Stress. Annu Rev Phytopathol 24:265–87. http://www.annualreviews.org/ https://doi.org/10.1146/annurev.py.24.090186.001405.

  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER. 2004. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92:475–82.

    Google Scholar 

  • Jiang Z, Huete AR, Didan K, Miura T. 2008. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112:3833–45.

    Google Scholar 

  • Jordan CF. 1969. Derivation of Leaf-area index from quality of light on the forest floor. Ecology 50:663–6.

    Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–4.

    CAS  PubMed  Google Scholar 

  • Kalfas JL, Xiao X, Vanegas DX, Verma SB, Suyker AE. 2011. Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO2 flux tower data. Agric For Meteorol 151:1514–28.

    Google Scholar 

  • Kang X, Hao Y, Cui X, Chen H, Huang S, Du Y, Li W, Kardol P, Xiao X, Cui L. 2016. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sens 8(5):391.

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. 2006. World map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–63.

    Google Scholar 

  • Kuglitsch FG, Reichstein M, Beer C, Carrara A, Ceulemans R, Granier A, Janssens IA, Koestner B, Lindroth A, Loustau D, Matteucci G, Montagnani L, Moors EJ, Papale D, Pilegaard K, Rambal S, Rebmann C, Schulze ED, Seufert G, Verbeeck H, Vesala T, Aubinet M, Bernhofer C, Foken T, Grünwald T, Heinesch B, Kutsch W, Laurila T, Longdoz B, Miglietta F, Sanz MJ, Valentini R. 2008. Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements. Biogeosciences Discuss 5:4481–519.

    Google Scholar 

  • Law B, Falge E, Gu L, Baldocchi D, Bakwin P, Berbigier P, Davis K, Dolman A, Falk M, Fuentes J, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens I, Jarvis P, Jensen N, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UK, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S. 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric For Meteorol 113:97–120.

    Google Scholar 

  • Li Z, Yu G, Xiao X, Li Y, Zhao X, Ren C, Zhang L, Fu Y. 2007. Modeling gross primary production of alpine ecosystems in the Tibetan Plateau using MODIS images and climate data. Remote Sens Environ 107:510–19.

    Google Scholar 

  • Liu X, Chen X, Li R, Long F, Zhang L, Zhang Q, Li J. 2017. Water-use efficiency of an old-growth forest in lower subtropical China. Sci Rep 7:42761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Wang L, Wang S. 2014. Comparison of different GPP models in China using MODIS image and ChinaFLUX data. Remote Sens 6:10215–31.

    Google Scholar 

  • Lloyd J, Taylor J. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.

    Google Scholar 

  • Lymburner L, Beggs P, Jacobson C. 2000. Estimation of canopy-average surface-specific leaf area using Landsat TM data. Photogramm Eng Remote Sens 66:183–91.

    Google Scholar 

  • Madugundu R, Al-Gaadi KA, Tola EK, Kayad AG, Jha CS. 2017. Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data. Saudi J Biol Sci 24:410–20.

    PubMed  Google Scholar 

  • Niu S, Xing X, Zhang Z, Xia J, Zhou X, Song B, Li L, Wan S. 2011. Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Glob Chang Biol 17:1073–82.

    Google Scholar 

  • Olmedo GF, Ortega-Farias S, de la Fuente-Sáiz D, Fonseca-Luego D, Fuentes-Penailillo F. 2016. water: Tools and Functions to Estimate Actual Evapotranspiration Using Land Surface Energy Balance Models in R. R J 8:352–69.

    Google Scholar 

  • Osmond B, Ananyev G, Berry J, Langdon C, Kolber Z, Lin G, Monson R, Nichol C, Rascher U, Schurr U, Smith S, Yakir D. 2004. Changing the way we think about global change research: Scaling up in experimental ecosystem science. Glob Chang Biol 10:393–407.

    Google Scholar 

  • Panigrahi P, Srivastava AK. 2017. Water and nutrient management effects on water use and yield of drip irrigated citrus in vertisol under a sub-humid region. J Integr Agric 16:1184–94.

    Google Scholar 

  • Peddinti SR, Kambhammettu BP. 2019. Dynamics of crop coefficients for citrus orchards of central India using water balance and eddy covariance flux partition techniques. Agric Water Manag 212:68–77. https://doi.org/10.1016/j.agwat.2018.08.027.

  • Peddinti SR, Kambhammettu BVNP, Ranjan S, Suradhaniwar S, Badnakhe MR, Adinarayana J, Gade RM. 2018. Modeling Soil–Water–Disease Interactions of Flood-Irrigated Mandarin Orange Trees: Role of Root Distribution Parameters. Vadose Zo J 17:0. https://dl.sciencesocieties.org/publications/vzj/abstracts/17/1/170129.

  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black TA, Barr AG. 2006. Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Chang Biol 12:294–310.

    Google Scholar 

  • Prince SD, Goward SN. 1996. International Journal of Remote Sensing Evaluation of the NOAA / NASA Pathfinder AVHRR Land Data Set for global primary production modelling. INT J Remote Sens 17:217–21.

    Google Scholar 

  • Qin W, Assinck FBT, Heinen M, Oenema O. 2016. Water and nitrogen use efficiencies in citrus production: A meta-analysis. Agric Ecosyst Environ 222:103–11.

    CAS  Google Scholar 

  • Raich AJW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Grace AL, Iii BM, Vörösmarty CJ, Applications SE, Nov N. 1991. Potential net primary productivity in South America: Application of a global model. Ecol Appl 1:399–429.

    CAS  PubMed  Google Scholar 

  • Reichstein M, Ciais P, Papale D, Valentini R, Running S, Viovy N, Cramer W, Granier A, Ogée J, Allard V, Aubinet M, Bernhofer C, Buchmann N, Carrara A, Grünwald T, Heimann M, Heinesch B, Knohl A, Kutsch W, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Pilegaard K, Pumpanen J, Rambal S, Schaphoff S, Seufert G, Soussana JF, Sanz MJ, Vesala T, Zhao M. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob Chang Biol 13:634–51.

    Google Scholar 

  • Roccuzzo G, Villalobos FJ, Testi L, Fereres E. 2014. Effects of water deficits on whole tree water use efficiency of orange. Agric Water Manag 140:61–8.

    Google Scholar 

  • Rodda SR, Thumaty KC, Jha CS, Dadhwal VK. 2016. Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves. Forestes 7:1–18.

    Google Scholar 

  • Rouse JW, Hass RH, Schell JA, Deering DW. 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resour Technol Satell Symp 1:309–17.

    Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Saugier B. 1995. CO2 fluxes over plant canopies and solar radiation: A review. Adv Ecol Res 26:1–68.

    Google Scholar 

  • Running SW, Thornton PE, Nemani RR, Glassy JM. 2000. Global terrestrial gross and net primary productivity from the earth observing system. In: Sala O, Jackson R, Mooney H, Eds. Methods in Ecosystem Science. New York: Springer-Verlag.

    Google Scholar 

  • Song Q-H, Fei X-H, Zhang Y-P, Sha L-Q, Liu Y-T, Zhou W-J, Wu C-S, Lu Z-Y, Luo K, Gao J-B, Liu Y-H. 2017. Water use efficiency in a primary subtropical evergreen forest in Southwest China. Sci Rep 7:43031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza MC, Biudes MS, de Morais Danelichen VH, Machado NG, de Musis CR, Vourlitis GL, de Souza Nogueira J. 2014. Estimation of gross primary production of the Amazon-Cerrado transitional forest by remote sensing techniques. Rev Bras Meteorol 29:01–12.

    Google Scholar 

  • Tang X, Ding Z, Li H, Li X, Luo J, Xie J, Chen D. 2015a. Characterizing ecosystem water-use efficiency of croplands with eddy covariance measurements and MODIS products. Ecol Eng 85:212–17.

    Google Scholar 

  • Tang X, Li H, Desai AR, Nagy Z, Luo J, Kolb TE, Olioso A, Xu X, Yao L, Kutsch W, Pilegaard K, Köstner B, Ammann C. 2015b. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Sci Rep 4:7483.

    Google Scholar 

  • Tang X, Wang Z, Xie J, Liu D, Desai AR, Jia M, Dong Z, Liu X, Liu B. 2013. Monitoring the seasonal and interannual variation of the carbon sequestration in a temperate deciduous forest with MODIS time series data. For Ecol Manage 306:150–60.

    Google Scholar 

  • Tejero IG, Zuazo VHD, Bocanegra JAJ, Fernández JLM. 2011. Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Sci Hortic (Amsterdam) 128:274–82.

    Google Scholar 

  • Tong X, Li J, Yu Q, Lin Z. 2014a. Biophysical Controls on Light Response of Net CO2 Exchange in a Winter Wheat Field in the North China Plain. PLoS One 9:e89469.

    PubMed  PubMed Central  Google Scholar 

  • Tong X, Zhang J, Meng P, Li J, Zheng N. 2014b. Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. J Hydrol 512:221–8. https://doi.org/10.1016/j.jhydrol.2014.02.042.

  • Tong XJ, Li J, Yu Q, Qin Z. 2009. Ecosystem water use efficiency in an irrigated cropland in the North China Plain. J Hydrol 374:329–37. https://doi.org/10.1016/j.jhydrol.2009.06.030.

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum AA, Ham JM, Saleska SR, Ahl DE. 2006. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ 102:282–92.

    Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum AA, Running SW, Zhao M, Wofsy SC, Dunn AL, Law BE, Campbell JL, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA. 2005. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob Chang Biol 11:666–84.

    Google Scholar 

  • Wagle P, Kakani VG. 2012. Growing season variability in evapotranspiration, ecosystem water use efficiency, and energy partitioning in switchgrass.

  • Wang Z, Xiao X, Yan X. 2010. Modeling gross primary production of maize cropland and degraded grassland in northeastern China. Agric For Meteorol 150:1160–7.

    Google Scholar 

  • Wu C, Munger JW, Niu Z, Kuang D. 2010. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sens Environ 114:2925–39.

    Google Scholar 

  • Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore B. 2004a. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens Environ 89:519–34.

    Google Scholar 

  • Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D. 2004b. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ 91:256–70.

    Google Scholar 

  • Xiao X, Zhang Q, Hollinger D, Aber J, Berrien M. 2005. Modeling gross primary production of an evergreen needleleaf forest using modis and climate data. Ecol Appl 15:954–69.

    Google Scholar 

  • Yan H, Fu Y, Xiao X, Huang HQ, He H, Ediger L. 2009. Modeling gross primary productivity for winter wheat-maize double cropping system using MODIS time series and CO2 eddy flux tower data. Agric Ecosyst Environ 129:391–400.

    Google Scholar 

  • Yu G, Song X, Wang Q, Liu Y, Guan D, Yan J, Sun X, Zhang L, Wen X. 2008. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177:927–37.

    CAS  PubMed  Google Scholar 

  • Zeri M, Hussain MZ, Anderson-Teixeira KJ, Delucia E, Bernacchi CJ. 2013. Water use efficiency of perennial and annual bioenergy crops in central Illinois. J Geophys Res Biogeosciences 118:581–9.

    Google Scholar 

  • Zhang J, Hu Y, Xiao X, Chen P, Han S, Song G, Yu G. 2009. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest. Agric For Meteorol 149:976–84.

    Google Scholar 

  • Zhang J, Ren W, An P, Pan Z, Wang L, Dong Z, He D, Yang J, Pan S, Tian H. 2015. Responses of crop water use efficiency to climate change and agronomic measures in the semiarid area of Northern China. PLoS One 10:1–22.

    Google Scholar 

  • Zhang Y, Xiao X, Jin C, Dong J, Zhou S, Wagle P, Joiner J, Guanter L, Zhang Y, Zhang G, Qin Y, Wang J, Moore B. 2016. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens Environ 183:154–69.

    Google Scholar 

  • Zhao F-H, Yu G-R, Li S-G, Ren C-Y, Sun X-M, Mi N, Li J, Ouyang Z. 2007. Canopy water use efficiency of winter wheat in the North China Plain. Agric Water Manag 93:99–108.

    Google Scholar 

  • Zhao M, Running SW. 2009. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 80(329):940–3.

    Google Scholar 

  • Zúñiga CE, Khot LR, Jacoby P, Sankaran S. 2016. Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines. In: Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping. Vol. 9866, p. 986600.

Download references

Acknowledgements

This research is carried as a part of ITRA-Water project that was supported by Media Lab Asia, Ministry of Communications and Information Technology, Government of India. The authors also acknowledge the subject matter expert Dr. Hicke Jeffrey for his critical and valuable comments toward improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa Rao Peddinti.

Additional information

Author’s contribution

Field data collection: SRP, SS; Data processing and analysis: SRP, BVNPK, SRR, KCT; Manuscript preparation: SRP, BVNPK; LANDSAT processing: SRP, SRR, KCT; Response to reviewers: SRP, BVNPK, SS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peddinti, S.R., Kambhammettu, B.V.N.P., Rodda, S.R. et al. Dynamics of Ecosystem Water Use Efficiency in Citrus Orchards of Central India Using Eddy Covariance and Landsat Measurements. Ecosystems 23, 511–528 (2020). https://doi.org/10.1007/s10021-019-00416-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00416-3

Keywords

Navigation