The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes

Abstract

In densely populated fire-prone regions, interactions between global change drivers, such as land-cover changes and climate change, may increase the frequency and severity of wildfires impacting forest ecosystems, thus diminishing their capability of provisioning key ecosystem goods and services for these societies. Yet, landscape mosaics play a crucial role in fire dynamics and behaviour. Here, we argue that promoting heterogeneous agro-forest mosaics could reduce the area affected by future fires. Specifically, we evaluated 24 landscape-scale management scenarios based on agricultural conversion, i.e. the creation of new agricultural land, that also explicitly incorporated fire suppression. Scenarios differed in the annual rate of such conversion, the spatial pattern (aggregate vs. scattered), and the location of new agricultural patches. To quantify the interactions between vegetation dynamics, fires, land-cover changes, and fire suppression, we coupled two spatially explicit models: a landscape dynamic fire-succession model and a land-cover change model. When applied to the Mediterranean region of Catalonia (NE Spain), new landscape mosaics favoured firefighting extinction capacity only after 15 years (on average) of cumulative land transformations. Agricultural conversion of at least 100 km2 year−1 was required to reduce total area burnt. A conversion rate of 200 km2 year−1 substantially improved fire suppression effectiveness, but subsequent conversion increases did not. When aggregated, new agriculture patches contributed more effectively to reduction in total area burnt and decreased the edge effect on remaining forest patches. Agricultural conversion in Mediterranean landscapes opens a new window for long-term spatial planning aimed at minimizing negative impacts of wildfire on forest ecosystems. These alternative strategies could help to develop landscape management practices in other fire-prone regions.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Abades SR, Gaxiola A, Marquet PA. 2014. Fire, percolation thresholds and the savanna forest transition: a neutral model approach. J Ecol 102:1386–93.

    Google Scholar 

  2. Adams MA. 2013. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future. For Ecol Manag 294:250–61.

    Google Scholar 

  3. Ager AA, Vaillant NM, Finney MA. 2010. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For Ecol Manag 259:1556–70.

    Google Scholar 

  4. Amatulli G, Camia A, San-Miguel-Ayanz J. 2013. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci Total Environ 450–451:209–22.

    PubMed  Google Scholar 

  5. Aquilué N, De Cáceres M, Fortin M-J, Fall A, Brotons L. 2017. A spatial allocation procedure to model land-use/land-cover changes: accounting for occurrence and spread processes. Ecol Model 344:73–86.

    Google Scholar 

  6. Archibald S, Roy DP, van Wilgen BW, Scholes RJ. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob Change Biol 15:613–30.

    Google Scholar 

  7. Badia-Perpinyá A, Pallares-Barbera M. 2006. Spatial distribution of ignitions in Mediterranean periurban and rural areas: the case of Catalonia. Int J Wildl Fire 15:187.

    Google Scholar 

  8. Batllori E, Parisien MA, Krawchuk MA, Moritz MA. 2013. Climate change-induced shifts in fire for Mediterranean ecosystems. Glob Ecol Biogeogr 22:1118–29.

    Google Scholar 

  9. Brotons L, Aquilué N, de Cáceres M, Fortin MJ, Fall A. 2013. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PLoS ONE 8:e62392.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brudvig LA, Wagner SA, Damschen EI. 2012. Corridors promote fire via connectivity and edge effects. Ecol Appl 22:937–46.

    PubMed  Google Scholar 

  11. Calkin DE, Thompson MP, Finney MA. 2015. Negative consequences of positive feedbacks in US wildfire management. For Ecosyst 2:1–10.

    Google Scholar 

  12. Campbell JL, Harmon ME, Mitchell SR. 2012. Can fuel-reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front Ecol Environ 10:83–90.

    Google Scholar 

  13. Castellnou M, Miralles M. 2009. The changing face of wildfires. Cris Response 5:56–7.

    Google Scholar 

  14. Castellnou M, Pagés J, Miralles M, Piqué M. 2009. Tipificación de los incendios forestales de Cataluña. Elaboración del mapa de incendios de diseño como herramienta para la gestión forestal. In: 5o congreso forestal. Ávila. pp 1–15.

  15. Cervera T, Pino J, Marull J, Padró R, Tello E. 2019. Understanding the long-term dynamics of forest transition: from deforestation to afforestation in a Mediterranean landscapes (Catalonia, 1865–2005). Land Use Policy 80:318–31.

    Google Scholar 

  16. Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC, Olsson P, Smith DMS, Walker B, Young OR, Berkes F, Biggs R, Grove JM, Naylor RL, Pinkerton E, Steffen W, Swanson FJ. 2010. Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol 25:241–9.

    PubMed  Google Scholar 

  17. Collins L, Penman TD, Price OF, Bradstock RA. 2015. Adding fuel to the fire? Revegetation influences wildfire size and intensity. J Environ Manag 150:196–205.

    CAS  Google Scholar 

  18. CREAF. 2009. Land Cover Map of Catalonia. Bellaterra, Spain. http://www.creaf.uab.es/mcsc.

  19. Díaz-Delgado R, Lloret F, Pons X. 2004. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc Ecol 19:731–45.

    Google Scholar 

  20. Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J, Retana J. 2015. Reassessing global change research priorities in mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43.

    Google Scholar 

  21. Donovan GH, Brown TC. 2005. An alternative incentive structure for wildfire management on national forest land. For Sci 51:387–95.

    Google Scholar 

  22. Duane A, Piqué M, Castellnou M, Brotons L. 2015. Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. Int J Wildl Fire 24:407–18.

    Google Scholar 

  23. Duncan BW, Schmalzer PA. 2004. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landsc Ecol 19:153–65.

    Google Scholar 

  24. Fernandes PM. 2013. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc Urban Plan 110:175–82.

    Google Scholar 

  25. Fernandes PM, Pacheco AP, Almeida R, Claro J. 2016. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur J For Res 135:1–16.

    Google Scholar 

  26. Finney MA. 2001. Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. For Sci 47:219–28.

    Google Scholar 

  27. Fischer AP, Spies TA, Steelman TA, Moseley C, Johnson BR, Bailey JD, Ager AA, Bourgeron P, Charnley S, Collins BM, Kline JD, Leahy JE, Littell JS, Millington JDA, Nielsen-Pincus M, Olsen CS, Paveglio TB, Roos CI, Steen-Adams MM, Stevens FR, Vukomanovic J, White EM, Bowman DMJS. 2016. Wildfire risk as a socioecological pathology. Front Ecol Environ 14:276–84.

    Google Scholar 

  28. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science (80-) 309:570–4.

    CAS  Google Scholar 

  29. Ganteaume A, Camia A, Jappiot M, San-Miguel-Ayanz J, Long-Fournel M, Lampin C. 2013. A review of the main driving factors of forest fire ignition over Europe. Environ Manag 51:651–62.

    Google Scholar 

  30. González-Olabarria J-R, Brotons L, Gritten D, Tudela A, Teres JA. 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. Int J Wildl Fire 21:905–14.

    Google Scholar 

  31. Hantson S, Lasslop G, Kloster S, Chuvieco E. 2015. Anthropogenic effects on global mean fire size. Int J Wildl Fire 24:589–96.

    Google Scholar 

  32. Hargrove W. 2000. Simulating fire patterns in heterogeneous landscapes. Ecol Model 135:243–63.

    Google Scholar 

  33. IPBES. 2016. The methodological assessment report on Scenarios and Models of Biodiversity and Ecosystem Services. (S. Ferrier, K. N. Ninan, P. Leadley, R. Alkemade, L. A. Acosta, H. R. Akçakaya, L. Brotons, W. W. L. Cheung, V. Christensen, K. A. Harhash, J. Kabubo-Mariara, C. Lundquist, M. Obersteiner, H. M. Pereira, G. Peterson, R. Pichs-Madruga, N. Ravindranatch, C., editor.). Bonn, Germany: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

  34. Johnson CN, Prior LD, Archibald S, Poulos HM, Barton AM, Williamson GJ, Bowman DMJS. 2018. Can trophic rewilding reduce the impact of fire in a more flammable world? Philos Trans R Soc B Biol Sci 373:20170443.

    Google Scholar 

  35. Keane RE, McKenzie D, Falk DA, Smithwick EAH, Miller C, Kellogg LKB. 2015. Representing climate, disturbance, and vegetation interactions in landscape models. Ecol Model 309–310:33–47.

    Google Scholar 

  36. Keane RE, Ryan KC, Veblen TT, Allen CD, Logan J, Hawkes B. 2002. Cascading effects of fire exclusion in Rocky Mountain ecosystems: a literature review. Gen Tech Rep RMRS-GTR 91:24.

    Google Scholar 

  37. Keeley JE. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science (80-) 284:1829–32.

    CAS  Google Scholar 

  38. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW. 2012. Fire in Mediterranean ecosystems: ecology. Cambridge: Evolution and Management.

    Google Scholar 

  39. Khabarov N, Krasovskii A, Obersteiner M, Swart R, Dosio A, San-Miguel-Ayanz J, Durrant T, Camia A, Migliavacca M. 2014. Forest fires and adaptation options in Europe. Reg Environ Change 16:21–30.

    Google Scholar 

  40. Knorr W, Kaminski T, Arneth A, Weber U. 2014. Impact of human population density on fire frequency at the global scale. Biogeosciences 11:1085–102.

    Google Scholar 

  41. Lambin EF, Turner BLI, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu J. 2001. The causes of land-use and land-cover change: moving beyond the myths. Glob Environ Change 11:261–9.

    Google Scholar 

  42. Lloret F, Calvo E, Pons X, Díaz-Degado R. 2002. Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landsc Ecol 17:745–59.

    Google Scholar 

  43. Lloret F, Peñuelas J, Estiarte M. 2005. Effects of vegetation canopy and climate on seedling establishment in Mediterranean shrubland. J Veg Sci 16:67–76.

    Google Scholar 

  44. Loehle C. 2004. Applying landscape principles to fire hazard reduction. For Ecol Manag 198:261–7.

    Google Scholar 

  45. Loepfe L, Martinez-Vilalta J, Oliveres J, Piñol J, Lloret F. 2010. Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. For Ecol Manag 259:2366–74.

    Google Scholar 

  46. Loepfe L, Martinez-Vilalta J, Piñol J. 2012. Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim Change 115:693–707.

    Google Scholar 

  47. Miller C, Urban DL. 2000. Connectivity of forest fuels and surface fire regimes. Landsc Ecol 15:145–54.

    Google Scholar 

  48. Mladenoff DJ. 2004. LANDIS and forest landscape models. Ecol Model 180:7–19.

    Google Scholar 

  49. Moreira F, Pe’er G. 2018. Agricultural policy can reduce wildfires. Science (80-) 359:1001.

    CAS  Google Scholar 

  50. Moreira F, Rego FC, Ferreira PG. 2001. Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–67.

    Google Scholar 

  51. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot E, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E. 2011. Landscape-wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–402.

    Google Scholar 

  52. Moritz MA. 2003. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology 84:351–61.

    Google Scholar 

  53. Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, McCaffrey S, Odion DC, Schoennagel T, Syphard AD. 2014. Learning to coexist with wildfire. Nature 515:58–66.

    CAS  PubMed  Google Scholar 

  54. Mouillot F, Rambal S, Joffre R. 2002. Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean ecosystem. Glob Change Biol 8:423–37.

    Google Scholar 

  55. Navarro LM, Pereira HM. 2012. Rewilding abandoned landscapes in europe. Ecosystems 15:900–12.

    Google Scholar 

  56. O’Donnell AJ, Boer MM, McCaw WL, Grierson PF. 2011. Vegetation and landscape connectivity control wildfire intervals in unmanaged semi-arid shrublands and woodlands in Australia. J Biogeogr 38:112–24.

    Google Scholar 

  57. Otero I, Nielsen J. 2017. Coexisting with wildfire? Achievements and challenges for a radical social-ecological transformation in Catalonia (Spain). Geoforum 85:234–46.

    Google Scholar 

  58. Palahi M, Mavsar R, Gracia C, Birot Y. 2008. Mediterranean forests under focus. Int For Rev 10:676–88.

    Google Scholar 

  59. Parisien MA, Junor DR, Kafka VG. 2007. Comparing landscape-based decision rules for placement of fuel treatments in the boreal mixedwood of western Canada. Int J Wildl Fire 16:664–72.

    Google Scholar 

  60. Pausas JG, Fernández-Muñoz S. 2012. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim Change 110:215–26.

    Google Scholar 

  61. Peng C. 2000. From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Model 135:33–54.

    CAS  Google Scholar 

  62. Price OF, Pausas JG, Govender N, Flannigan M, Fernandes PM, Brooks ML, Bird RB. 2015. Global patterns in fire leverage: the response of annual area burnt to previous fire. Int J Wildl Fire 24:297–306.

    Google Scholar 

  63. Radeloff V, Hammer R. 2005. The wildland-urban interface in the United States. Ecol Appl 15:799–805.

    Google Scholar 

  64. Rammer W, Seidl R. 2015. Coupling human and natural systems: Simulating adaptive management agents in dynamically changing forest landscapes. Glob Environ Change 35:475–85.

    Google Scholar 

  65. Regos A, Aquilué N, López I, Codina M, Retana J, Brotons L. 2016. Synergies between forest biomass extraction for bioenergy and fire suppression in Mediterranean ecosystems: insights from a storyline-and-simulation approach. Ecosystems 19:786–802.

    Google Scholar 

  66. Reyer CPO, Rammig A, Brouwers N, Langerwisch F. 2015. Forest resilience, tipping points and global change processes. J Ecol 103:1–4.

    Google Scholar 

  67. Rodrigo A, Retana J, Picó FX. 2004. Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85:716–29.

    Google Scholar 

  68. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E. 2005. Forest transitions: towards a global understanding of land use change. Glob Environ Change 15:23–31.

    Google Scholar 

  69. Ruffault J, Mouillot F, Peters DPC. 2015. How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 6:1–19.

    Google Scholar 

  70. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    CAS  PubMed  Google Scholar 

  71. Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N, Morgan P, Moritz MA, Rasker R, Turner MG, Whitlock C. 2017. Adapt to more wildfire in western North American forests as climate changes. Proc Natl Acad Sci 114:4582–90.

    CAS  PubMed  Google Scholar 

  72. Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpää S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabaté S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B. 2005. Ecosystem service supply and vulnerability to global change in Europe. Sci (New York, NY) 310:1333–7.

    Google Scholar 

  73. Seidl R, Rammer W, Scheller RM, Spies TA. 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100.

    Google Scholar 

  74. Seijo F, Millington JDA, Gray R, Sanz V, Lozano J, García-Serrano F, Sangüesa-Barreda G, Camarero JJ. 2015. Forgetting fire: traditional fire knowledge in two chestnut forest ecosystems of the Iberian Peninsula and its implications for European fire management policy. Land Use Policy 47:130–44.

    Google Scholar 

  75. Spies TA, White EM, Ager AA, Kline JD, Bolte JP, Platt Emily K, Olsen K, Pabst RJ, Barros AMG, Bailey JD, Charnley S, Morzillo AT, Koch J, Steen-Adams MM, Singleton PH, Sulzman J, Schwartz C, Csuiti B. 2017. Using an agent-based model to examine a coupled human and natural system in a fire-prone landscape in Oregon, USA. Ecol Soc 22:25.

    Google Scholar 

  76. Stephens SL, Millar CI, Collins BM. 2010. Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates. Environ Res Lett 5:024003.

    Google Scholar 

  77. Stephens SL, Moghaddas JJ, Edminster C, Fiedler CE, Haase S, Harrington M, Keeley JE, Knapp EE, McIver JD, Metlen K, Skinner CN, Youngblood A. 2009. Fire treatment effects on vegetation structure, fuels, and potential fire severity in western U.S. forests. Ecol Appl 19:305–20.

    PubMed  Google Scholar 

  78. Syphard AD, Keeley JE, Brennan TJ. 2011. Comparing the role of fuel breaks across southern California national forests. For Ecol Manag 261:2038–48.

    Google Scholar 

  79. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB. 2007. Human influences on California fire regimes. Ecol Appl 17:1388–402.

    PubMed  Google Scholar 

  80. Taylor AH, Trouet V, Skinner CN, Stephens S. 2016. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE. Proc Natl Acad Sci 113:13684–9.

    CAS  PubMed  Google Scholar 

  81. Tedim F, Leone V, Xanthopoulos G. 2016. A wildfire risk management concept based on a social-ecological approach in the European Union: fire smart territory. Int J Disaster Risk Reduct 18:138–53.

    Google Scholar 

  82. Turner MG, Gardner RH, O’Neill RV. 2001. Landscape ecology in theory and practice. New York: Springer.

    Google Scholar 

  83. Turner MG, Romme WH. 1994. Landscape dynamics in crown fire ecosystems. Landsc Ecol 9:59–77.

    Google Scholar 

  84. Viedma O, Moity N, Moreno JM. 2015. Changes in landscape fire-hazard during the second half of the 20th century: agriculture abandonment and the changing role of driving factors. Agric Ecosyst Environ 207:126–40.

    Google Scholar 

  85. Vilar L, Camia A, San-Miguel-Ayanz J, Martín MP. 2016. Modeling temporal changes in human-caused wildfires in Mediterranean Europe based on land use-land cover interfaces. For Ecol Manag 378:68–78.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (INMODES Project CGL2017-89999-C2-2-R), the EU’s 7FP project (ERA-NET SUMFORESTS Project FutureBioEcon PCIN-2017-052) and the Generalitat de Catalunya (CERCA Program). Additional funding came from the European Commission via the Marie Curie IRSES project NEWFORESTS (EU’s 7th programme, PIRSES-GA-2013-612645). Núria Aquilué was funded by Natural Sciences and Engineering Research Council of Canada through the CREATE program on Forest Complexity Modelling (FCM) awarded to C. Messier and others. We thank Lana Ruddick for helping with the editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Núria Aquilué.

Additional information

Author contributions

NA and LB designed the study; NA, M-JF, CM, and LB performed the research; NA developed and coded the landscape dynamic modelling framework; NA analysed the data; NA led the writing of the manuscript and M-JF, CM and LB contributed to this part. Data repository: https://sites.google.com/site/medfireproject/medfire/MEDFIRE-archive.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aquilué, N., Fortin, M., Messier, C. et al. The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes. Ecosystems 23, 34–51 (2020). https://doi.org/10.1007/s10021-019-00385-7

Download citation

Keywords

  • landscape management
  • Mediterranean-type ecosystem
  • agricultural conversion
  • fire suppression
  • fire-succession model
  • land-cover change model
  • model coupling