Rates of Sediment Resuspension and Erosion Following Green Turtle Grazing in a Shallow Caribbean Thalassia testudinum Meadow

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Seagrass meadows buffer sediments against resuspension and erosion by reducing water velocity and attenuating wave energy, thereby promoting accumulation of sediment and associated carbon. Grazing by green turtles (Chelonia mydas) can significantly reduce the aboveground canopy in meadows. Increasing green turtle population sizes will return more seagrass areas to a naturally grazed state; however, it is not well understood how green turtle grazing will affect sediment processes in seagrass meadows. To evaluate effects of grazing, we measured sediment erosion following a clipping experiment in a shallow Caribbean Thalassia testudinum seagrass meadow and rates of sediment resuspension in an area naturally grazed by turtles. Following removal of the seagrass canopy, erosion of surface sediments did not increase compared to unclipped reference plots during the clipping experiment. We provide the first estimates of particle deposition and resuspension rates from a seagrass meadow grazed by green turtles. Rates did not differ between areas naturally grazed for at least one year and ungrazed areas. On average, 51% of the total sediment flux was comprised of resuspended sediments in the area grazed by turtles, and 52% in the ungrazed area of the meadow. Green turtle grazing also did not affect the carbon content of sediment particles or the downward carbon flux in the meadow. Our results demonstrate that grazing did not increase the vulnerability of surface sediments to loss in this system, and as green turtles recover, their natural grazing regime may not directly affect sediment processes contributing to carbon accumulation in shallow, coastal meadows.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Agawin NSR, Duarte CM. 2002. Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries 25:1205–9.

    Google Scholar 

  2. Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays GC, Fourqurean JW, Macreadie PI. 2015. Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Chang 5:1038–45. https://doi.org/10.1038/nclimate2763.

    Article  Google Scholar 

  3. Bjorndal KA. 1980. Nutrition and grazing behavior of the green turtle Chelonia mydas. Mar Biol 56:147–54.

    CAS  Google Scholar 

  4. Bjorndal KA. 1997. Foraging ecology and nutrition in sea turtles. In: Lutz PL, Musick JA, Eds. The biology of sea turtles. Boca Raton: CRC Press. p 199–232.

    Google Scholar 

  5. Blomqvist S, Kofoed C. 1981. Sediment trapping-A subaquatic in situ experiment. Limnol Oceanogr 26:585–90.

    Google Scholar 

  6. Burdige DJ, Zimmerman RC. 2002. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–63.

    CAS  Google Scholar 

  7. Cahoon DR, Lynch JC, Hensel P, Boumans R, Perez BC, Segura B, Day JW. 2002. High-precision measurements of sediment elevation: I. Recent improvements to the sediment-erosion table. J Sediment Res 72:730–3.

    Google Scholar 

  8. Chaloupka M, Bjorndal KA, Balazs GH, Bolten AB, Ehrhart LM, Limpus CJ, Suganuma H, Troëng S, Yamaguchi M. 2008. Encouraging outlook for recovery of a once severely exploited marine megaherbivore. Glob Ecol Biogeogr 17:297–304.

    Google Scholar 

  9. Chen G, Azkab MH, Chmura GL, Chen S, Sastrosuwondo P, Ma Z, Dharmawan IWE, Yin X, Chen B. 2017. Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Sci Rep 7:42406.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Christianen MJA, van Belzen J, Herman PMJ, van Katwijk MM, Lamers LPM, van Leent PJM, Bouma TJ. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8:e62413.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Christianen MJA, Herman PMJ, Bouma TJ, Lamers LPM, van Katwijk MM, van der Heide T, Mumby PJ, Silliman BR, Engelhard SL, van de Kerk M, Kiswara W, van de Koppel J. 2014. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc R Soc B Biol Sci 281:20132890.

    Google Scholar 

  12. Dahl M, Deyanova D, Lyimo LD, Näslund J, Samuelsson GS, Mtolera MSPP, Björk M, Gullström M. 2016. Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. J Ecol 104:654–64. https://doi.org/10.1111/1365-2745.12564.

    CAS  Article  Google Scholar 

  13. Dauby P, Bale AJ, Bloomer N, Canon C, Ling RD, Norro A, Robertson JE, Simon A, Théate J-M, Watson AJ, Frankignoulle M. 1995. Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar Ecol Prog Ser 126:233–46.

    Google Scholar 

  14. de Mendiburu F. 2017. Agricolae: statistical procedures for agricultural research. R package version 1.2-6. https://cran.r-project.org/package=agricolae. Accessed 11 Feb 2019.

  15. Duarte CM, Marbà N, Gacia E, Fourqurean JW, Beggins J, Barrón C, Apostolaki ET. 2010. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochem Cycles 24:1–8.

    Google Scholar 

  16. Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8.

    CAS  Google Scholar 

  17. Fonseca MS, Cahalan JA. 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuar Coast Shelf Sci 35:565–76.

    Google Scholar 

  18. Fonseca MS, Fisher JS, Zieman JC, Thayer GW. 1982. Influence of the seagrass, Zostera marina L., on current flow. Estuar Coast Shelf Sci 15:351–64.

    Google Scholar 

  19. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–9. https://doi.org/10.1038/ngeo1477.

    CAS  Article  Google Scholar 

  20. Fourqurean JW, Manuel S, Coates KA, Kenworthy WJ, Smith SR. 2010. Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Mar Ecol Prog Ser 419:223–32.

    Google Scholar 

  21. Gacia E, Duarte CM. 2001. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuar Coast Shelf Sci 52:505–14.

    Google Scholar 

  22. Gacia E, Duarte CM, Marbà N, Terrados J, Kennedy H, Fortes MD, Tri NH. 2003. Sediment deposition and production in SE-Asia seagrass meadows. Estuar Coast Shelf Sci 56:909–19.

    CAS  Google Scholar 

  23. Gacia E, Duarte CM, Middelburg JJ. 2002. Carbon and nutrient deposition in a Mediterranean seagrass (Posidonia oceanica) meadow. Limnol Oceanogr 47:23–32.

    CAS  Google Scholar 

  24. Gacia E, Granata TC, Duarte CM. 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65:255–68.

    Google Scholar 

  25. Greiner JT, Wilkinson GM, McGlathery KJ, Emery KA. 2016. Sources of sediment carbon sequestered in restored seagrass meadows. Mar Ecol Prog Ser 551:95–105.

    CAS  Google Scholar 

  26. Håkanson L, Floderus S, Wallin M. 1989. Sediment trap assemblages—a methodological description. Sediment/Water Interact 176(177):481–90. https://doi.org/10.1007/978-94-009-2376-8_46.

    Article  Google Scholar 

  27. Hansen JCR, Reidenbach MA. 2013. Seasonal growth and senescence of a Zostera marina seagrass meadow alters wave-dominated flow and sediment suspension within a coastal bay. Estuaries and Coasts 36:1099–114.

    CAS  Google Scholar 

  28. Heithaus MR, Alcoverro T, Arthur R, Burkholder DA, Coates KA, Christianen MJ, Kelkar N, Manuel SA, Wirsing AJ, Kenworthy WJ, Fourqurean JW. 2014. Seagrasses in the age of sea turtle conservation and shark overfishing. Front Mar Sci 1:1–6. https://doi.org/10.3389/fmars.2014.00028/abstract.

    Article  Google Scholar 

  29. Hendriks IE, Sintes T, Bouma TJ, Duarte CM. 2008. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–73.

    Google Scholar 

  30. Jackson JBC. 1997. Reefs since Columbus. Coral Reefs 16:S23–32.

    Google Scholar 

  31. Jackson JBC. 2001. What was natural in the coastal oceans? Proc Natl Acad Sci 98:5411–18.

    CAS  PubMed  Google Scholar 

  32. Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–37.

    CAS  PubMed  Google Scholar 

  33. Johnson RA, Gulick AG, Bolten AB, Bjorndal KA. 2017. Blue carbon stores in tropical seagrass meadows maintained under green turtle grazing. Sci Rep 7:13545.

    PubMed  PubMed Central  Google Scholar 

  34. Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbá N, Middelburg JJ. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cycles 24:1–8.

    Google Scholar 

  35. Kennedy H, Gacia E, Kennedy DP, Papadimitriou S, Duarte CM. 2004. Organic carbon sources to SE Asian coastal sediments. Estuar Coast Shelf Sci 60:59–68.

    CAS  Google Scholar 

  36. Koch EW. 1999. Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. Aquat Bot 65:269–80.

    Google Scholar 

  37. Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302.

    Google Scholar 

  38. Lawson SE, McGlathery KJ, Wiberg PL. 2012. Enhancement of sediment suspension and nutrient flux by benthic macrophytes at low biomass. Mar Ecol Prog Ser 448:259–70.

    Google Scholar 

  39. Moran KL, Bjorndal KA. 2005. Simulated green turtle grazing affects structure and productivity of seagrass pastures. Mar Ecol Prog Ser 305:235–47.

    Google Scholar 

  40. Ogden JC. 1980. Faunal relationships in Caribbean seagrass beds. In: Phillips RC, McRoy CP, Eds. Handbook of seagrass biology: an ecosystem perspective. New York: Garland STPM Press. p 173–98.

    Google Scholar 

  41. Pejrup M, Valeur J, Jensen A. 1996. Vertical fluxes of particulate matter in Aarhus Bight, Denmark. Cont Shelf Res 16:1047–64.

    Google Scholar 

  42. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2018. _nlme: linear and nonlinear mixed effects models. http://cran.r-project.org/package=nlme. Accessed 11 Feb 2019.

  43. Potouroglou M, Bull JC, Krauss KW, Kennedy HA, Fusi M, Daffonchio D, Mangora MM, Githaiga MN, Diele K, Huxham M. 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Sci Rep 7:1–11.

    CAS  Google Scholar 

  44. Preen A. 1995. Impacts of dugong foraging on seagrass habitats: observational and experimental evidence for cultivation grazing. Mar Ecol Prog Ser 124:201–13.

    Google Scholar 

  45. R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/. Accessed 11 Feb 2019.

  46. Terrados J, Duarte CM. 2000. Experimental evidence of reduced particle resuspension within a seagrass (Posidonia oceanica L.) meadow. J Exp Mar Bio Ecol 243:45–53.

    Google Scholar 

  47. Thomson ACG, Trevathan-Tackett SM, Maher DT, Ralph PJ, Macreadie PI. 2018. Bioturbator-stimulated loss of seagrass sediment carbon stocks. Limnol Oceanogr 64:1–15.

    Google Scholar 

  48. Valeur JR. 1994. Resuspension mechanisms and measuring methods. In: Floderus S, Heiskanen A, Olesen M, Wassmann P, Eds. Sediment trap studies in the nordic countries. Helsingor: Marine Biological Lab. p 185–203.

    Google Scholar 

  49. Ward LG, Kemp WM, Boynton WR. 1984. The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Mar Geol 59:85–103.

    Google Scholar 

  50. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL, Ar Hughes, Kendrick GA, Wj Kenworthy, Short FT, Williams SL. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106:12377–81.

    CAS  PubMed  Google Scholar 

  51. Wickham H, Francois R, Henry L, Müller K. 2017. dplyr: a grammar of data manipulation. R package version 0.7.2. https://cran.r-project.org/package=dplyr. Accessed 11 Feb 2019.

  52. Williams SL. 1988. Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Mar Biol 98:447–55.

    Google Scholar 

  53. Yahel G, Yahel R, Katz T, Lazar B, Herut B, Tunnicliffe V. 2008. Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments. Mar Ecol Prog Ser 372:195–209.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Ashley Meade, Karalyn Bridgman, and Rebecca Rash for their assistance with laboratory sample processing at the University of Florida, and the staff of the Central Caribbean Marine Institute for their support during this project. This study was funded by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138 to RAJ. Additional funding was provided by a Grant-in-Aid of Research from Sigma Xi and grants from the PADI Foundation, The Explorers Club Exploration Fund—Mamont Scholars Program, and the University of Florida International Center. Private donations from Lalita Shastry, the Melnick family through the Cynthia A. Melnick Endowment, and the Yoder family through the Carrie Lynn Yoder Memorial Scholarship supported our work. Additional funding for this project is from the Archie Carr Center for Sea Turtle Research (University of Florida) through support from the Disney Conservation Fund to protect Florida’s sea turtles.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert A. Johnson.

Additional information

Author Contributions

RAJ, ABB, and KAB conceived of and designed the study. RAJ and AGG performed the research. RAJ analyzed the data and wrote the paper with contributions from all authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Johnson, R.A., Gulick, A.G., Bolten, A.B. et al. Rates of Sediment Resuspension and Erosion Following Green Turtle Grazing in a Shallow Caribbean Thalassia testudinum Meadow. Ecosystems 22, 1787–1802 (2019). https://doi.org/10.1007/s10021-019-00372-y

Download citation

Keywords

  • sediment dynamics
  • resuspension
  • erosion
  • seagrass
  • green turtles
  • grazing
  • carbon