Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes

Abstract

Understanding the interplay between climate, fuel and fire is necessary for developing strategies that minimize the negative impacts of fire on people and ecosystems. Here, we aim to investigate whether past fires limit fire activity by reducing fuel availability (‘fire leverage’) in Catalonia (NE Spain; 32,107 km2), a Mediterranean region encompassing diverse landscapes of agricultural plains and pine–oak mosaics. We built a hierarchical model to assess variations in annual burnt area in relation to weather, past fires and time for a 40-year period (1976–2015). The model also quantified how mean annual wind speed and the arrangement of forests modulated leverage. We found that the cumulated burnt area in the last 6–7 years reduced the re-occurrence of fires. Annual burnt area increased with both dry weather conditions and the number of hot days (≥ 30°C) and showed a moderate decline over the 40-year time series. Model outputs provided some evidence that landscapes with higher mean annual wind speed had lower fire leverage and landscapes with more continuous forest cover had higher fire leverage; however, the statistical uncertainty surrounding the effects of these two relationships was high. In summary, our results show that climate–fire relationships in Mediterranean landscapes are dynamic: fires create short-lived conditions where fuels limit future fire activity in fire regimes usually limited by weather. Our work highlights the multiple factors regulating leverage and helps to understand the interplay between climate, vegetation and recurrent fires in shaping fire regimes.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Allen CD. 2007. Interactions across spatial scales among forest dieback, fire, and erosion in northern New Mexico landscapes. Ecosystems 10:797–808.

    Article  Google Scholar 

  2. Archibald S, Roy DP, van Wilgen BW, Scholes RJ. 2009. What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biology 15:613–30.

    Article  Google Scholar 

  3. Barker JW, Price OF. 2018. Positive severity feedback between consecutive fires in dry eucalypt forests of southern Australia. Ecosphere 9(3):e02110. https://doi.org/10.1002/ecs2.2110.

    Article  Google Scholar 

  4. Barros AMG, Pereira JMC. 2014. Wildfire selectivity for land cover type: does size matter? PloS ONE 9:e84760. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3890279&tool=pmcentrez&rendertype=abstract. Last accessed 25/03/2014.

  5. Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1–48.

    Article  Google Scholar 

  6. Batllori E, Ackerly DD, Moritz MA. 2015. A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grassland–shrubland–woodland systems. Environmental Research Letters 10:034018. http://stacks.iop.org/1748-9326/10/i=3/a=034018.

  7. Batllori E, Parisien M-A, Krawchuk MA, Moritz M. 2013. Climate change-induced shifts in fire for Mediterranean ecosystems. Global Ecology and Biogeography 22:1118–29.

    Article  Google Scholar 

  8. Bedia J, Golding N, Casanueva A, Iturbide M, Buontempo C, Gutiérrez JM. 2018. Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe. 9:101–10.

    Google Scholar 

  9. Bedia J, Herrera S, Gutiérrez JM. 2014. Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain. Natural Hazards and Earth System Sciences 14:53–66.

    Article  Google Scholar 

  10. Boer MM, Sadler RJ, Wittkuhn RS, McCaw L, Grierson PF. 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of active fire management in SW Australian forests. Forest Ecology and Management 259:132–42. http://linkinghub.elsevier.com/retrieve/pii/S0378112709007294.

  11. Bowman DMJS, Williamson GJ, Abatzoglou JT, Kolden CA, Cochrane MA, Smith AMS. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology and Evolution 1:1–6. https://doi.org/10.1038/s41559-016-0058.

    Article  Google Scholar 

  12. Bradstock RA. 2010. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography 19:145–58.

    Article  Google Scholar 

  13. Bradstock R, Penman T, Boer M, Price O, Clarke H. 2014. Divergent responses of fire to recent warming and drying across south-eastern Australia. Global Change Biology 20:1412–28.

    Article  PubMed  Google Scholar 

  14. Brotons L, Aquilué N, de Cáceres M, Fortin M-J, Fall A. 2013. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes. PloS One 8(5):e62392. https://doi.org/10.1371/journal.pone.0062392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Cáceres M, Martin-StPaul N, Turco M, Cabon A, Granda V. 2018. Estimating daily meteorological data and downscaling climate models over landscapes. Environmental Modelling & Software 108:186–96. https://linkinghub.elsevier.com/retrieve/pii/S1364815217309830.

  16. Cardil A, Eastaugh CS, Molina DM. 2015. Extreme temperature conditions and wildland fires in Spain. Theorethical and Applied Climatology 122:219–28.

    Article  Google Scholar 

  17. Christensen N. 1985. Shrubland Fire Regimes and Their Evolutionary Consequences. In: Picket S, White P, Eds. The Ecology of Natural Disturbance and Patch Dynamics. USA: Academic Press, Inc. p 85–100.

    Google Scholar 

  18. Díaz-Delgado R, Lloret F, Pons X. 2004. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landscape Ecology 19:731–45.

    Article  Google Scholar 

  19. Duane A, Aquilué N, Gil-Tena A, Brotons L. 2016. Integrating fire spread patterns in fire modelling at landscape scale. Environmental Modelling & Software 86:219–31.

    Article  Google Scholar 

  20. Duane A, Brotons L. 2018. Synoptic weather conditions and changing fire regimes in a Mediterranean environment. Agricultural and Forest Meteorology 253–254:190–202.

    Article  Google Scholar 

  21. Duane A, Piqué M, Castellnou M, Brotons L. 2015. Predictive modelling of fire occurrences from different fire spread patterns in Mediterranean landscapes. International Journal of Wildland Fire 24:407–18.

    Article  Google Scholar 

  22. Eugenio M, Verkaik I, Lloret F, Espelta JM. 2006. Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula). Forest Ecology and Management 231:47–54.

    Article  Google Scholar 

  23. Fernandes PM. 2013. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning 110:175–82.

    Article  Google Scholar 

  24. Fréjaville T, Curt T. 2017. Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environmental Research Letters 12:035006. http://stacks.iop.org/1748-9326/12/i=3/a=035006?key=crossref.4e31ef04692b5cf6ed6878b6f7e62b1c.

  25. Gencat. 2004. Mapa de recursos eòlics de Catalunya. Technical Report. Barcelona, Spain: Generalitat de Catalunya.

  26. Gil-Tena A, Aquilué N, Duane A, De Cáceres M, Brotons L. 2016. Mediterranean fire regime effects on pine-oak forest landscape mosaics under global change in NE Spain. European Journal of Forest Research 135(2):403–16.

    Article  CAS  Google Scholar 

  27. He HS, DeZonia BE, Mladenoff DJ. 2000. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology 15:591–601.

    Article  Google Scholar 

  28. Ibañez JJ, Burriel JA, Pons X. 2002. El Mapa de Cobertes del Sòl de Catalunya: una eina per al coneixement, planificació i la gestió del territori. Perspectives territorials 3:10–25.

    Google Scholar 

  29. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Pachauri RK, Meyer LA, editors.). Geneva, Switzerland: IPCC.

  30. Keeley JE. 2004. Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire 13:173–82.

    Article  Google Scholar 

  31. Keeley JE, Fotheringham CJ, Morais M. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–32.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly LT, Brotons L. 2017. Using fire to promote biodiversity. Science 355:1264–5.

    Article  CAS  PubMed  Google Scholar 

  33. Krawchuk M, Moritz M. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92:121–32.

    Article  Google Scholar 

  34. Liberato MLR, Pinto JG, Trigo IF, Trigo RM. 2011. Klaus—An exceptional winter storm over northern Iberia and southern France. Weather 66:330–4.

    Article  Google Scholar 

  35. Loehle C. 2004. Applying landscape principles to fire hazard reduction. Forest Ecology and Management 198:261–7.

    Article  Google Scholar 

  36. Marcos R, Turco M, Bedía J, Llasat MC, Provenzale A. 2015. Seasonal predictability of summer fires in a Mediterranean environment. International Journal of Wildland Fire 24:1076–84.

    Article  Google Scholar 

  37. Martín-Martín C, Bunce RGH, Saura S, Elena-Rosselló R. 2013. Changes and interactions between forest landscape connectivity and burnt area in Spain. Ecological Indicators 33:129–38.

    Article  Google Scholar 

  38. McGarigal K, Cushman S, Ene E. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Amherts, USA: University of Massachusetts.

    Google Scholar 

  39. Mermoz M, Kitzberger T, Veblen TT. 2005. Landscape influences on occurrence and spread of wildfires in Patagonian forests and shrublands. Ecology 86:2705–15.

    Article  Google Scholar 

  40. Moreira F, Pe’er G. 2018. Agricultural policy can reduce wildfire. Science 359:1001.

    CAS  PubMed  Google Scholar 

  41. Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, McCaffrey S, Odion DC, Schoennagel T, Syphard AD. 2014. Learning to coexist with wildfire. Nature 515:58–66.

    Article  CAS  PubMed  Google Scholar 

  42. Moritz M, Keeley JE, Johnson EA, Schaffner AA. 2004. Testing a basic assumption of shrubland fire management: how important is fuel age? Frontiers in Ecology and the Environment 2:67–72.

    Article  Google Scholar 

  43. Otero I, Nielsen JØ. 2017. Coexisting with wildfire? Achievements and challenges for a radical social-ecological transformation in Catalonia (Spain). Geoforum 85:234–46.

    Article  Google Scholar 

  44. Parisien M-A, Moritz M. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs 79:127–54.

    Article  Google Scholar 

  45. Pausas JG, Fernández-Muñoz S. 2011. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110:215–26.

    Article  Google Scholar 

  46. Pausas JG, Paula S. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography 21:1074–82.

    Article  Google Scholar 

  47. Pausas JG, Ribeiro E. 2013. The global fire-productivity relationship. Global Ecology and Biogeography 22:728–36.

    Article  Google Scholar 

  48. Pereira MG, Trigo RM, Da Camara CC, Pereira JMC, Leite SM. 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agricultural and Forest Meteorology 129:11–25.

    Article  Google Scholar 

  49. Pique M, Castellnou M, Valor T, Pagés J, Larrañaga A, Miralles M, Cervera T. 2011. Integració del risc de grans incendis forestals (GIF) en la gestió forestal Incendis tipus i vulnerabilitat de les estructures forestals al foc de capçades. Technical Report. Barcelona, Spain: Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya.

  50. Pollock LJ, Morris WK, Vesk PA. 2012. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35:716–25.

    Article  Google Scholar 

  51. Price OF, Bradstock RA, Keeley JE, Syphard AD. 2012. The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management 113:301–7.

    Article  PubMed  Google Scholar 

  52. Price OF, Pausas JG, Govender N, Flannigan M, Fernandes PM, Brooks ML, Bird RB. 2015a. Global patterns in fire leverage: the response of annual area burnt to previous fire. International Journal of Wildland Fire 24:297–306.

    Article  Google Scholar 

  53. Price OF, Penman T, Bradstock R, Boer M, Clarke H. 2015b. Biogeographical variation in the potential effectiveness of prescribed fire in south-east Australia. Journal of Biogeography 42:2234–45.

    Article  Google Scholar 

  54. Puerta-Piñero C, Espelta JM, Sánchez-Humanes B, Rodrigo A, Coll L, Brotons L. 2012. History matters: Previous land use changes determine post-fire vegetation recovery in forested Mediterranean landscapes. Forest Ecology and Management 279:121–7.

    Article  Google Scholar 

  55. R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.

  56. Regos A, Aquilué N, Retana J, De Cáceres M, Brotons L. 2014. Using unplanned fires to help suppressing future large fires in Mediterranean forests. Añel JA, editor. PloS ONE 9:e94906.

  57. Rodrigo A, Retana J, Picó FX. 2004. Direct regeneration is not the only response of mediterranean forests to large fires. Ecology 85:716–29. http://www.esajournals.org/doi/abs/10.1890/02-0492.

  58. Rothermel RC. 1991. Predicting behavior and size of crown fires in the northern Rocky Mountains. Odgen, UT: USDA Forest Service, Intermountain Research Station, Research Paper INT-438.

  59. Russo A, Gouveia C, Pascoa P, DaCamara CC, Sousa PM, Trigo RM. 2017. Assessing the role of drought events on wildfires in the Iberian Peninsula. Agricultural and Forest Meteorology 237–238:50–9.

    Article  Google Scholar 

  60. Saura-Mas S, Paula S, Pausas JG, Lloret F. 2010. Fuel loading and flammability in the Mediterranean Basin woody species with different post-fire regenerative strategies. International Journal of Wildland Fire 19:783–94.

    Article  Google Scholar 

  61. Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N, Morgan P, Moritz MA, Rasker R, Turner MG, Whitlock C. 2017. Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences 114:4582–90.

    Article  CAS  Google Scholar 

  62. Sousa PM, Trigo RM, Pereira MG, Bedia J, Gutiérrez JM. 2015. Different approaches to model future burnt area in the Iberian Peninsula. Agricultural and Forest Meteorology 202:11–25. http://linkinghub.elsevier.com/retrieve/pii/S0168192314002974.

  63. Syphard AD, Keeley JE, Pfaff AH, Ferschweiler K. 2017. Human presence diminishes the importance of climate in driving fire activity across the United States. Proceedings of the National Academy of Sciences 114:13750–5. http://www.pnas.org/lookup/doi/10.1073/pnas.1713885114.

  64. Thompson MP, Calkin DE. 2011. Uncertainty and risk in wildland fire management: A review. Journal of Environmental Management 92:1895–909.

    Article  PubMed  Google Scholar 

  65. Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Trigo RM. 2017. On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports 7:81. http://www.nature.com/articles/s41598-017-00116-9.

  66. Turco M, Jerez S, Doblas-Reyes FJ, Aghakouchak A, Llasat MC, Provenzale A. 2018. Skilful forecasting of global fire activity using seasonal climate predictions. Nature Communications 9. http://dx.doi.org/10.1038/s41467-018-05250-0.

  67. Turco M, Llasat M-C, von Hardenberg J, Provenzale A. 2014. Climate change impacts on wildfires in a Mediterranean environment. Climatic Change 125:369–80. http://link.springer.com/10.1007/s10584-014-1183-3.

  68. Turco M, Llasat MC, Hardenberg J, Provenzale A. 2013a. Impact of climate variability on summer fires in a Mediterranean environment (northeastern Iberian Peninsula). Climatic Change 116:665–78. http://link.springer.com/10.1007/s10584-012-0505-6. Last accessed 31/10/2013.

  69. Turco M, Llasat MC, Tudela A, Castro X, Provenzale A. 2013b. Brief communication Decreasing fires in a Mediterranean region (1970–2010, NE Spain). Natural Hazards and Earth System Science 13:649–52.

    Article  Google Scholar 

  70. Urbieta IR, Zavala G, Bedia J, Gutiérrez JM, Miguel-Ayanz JS, Camia A, Keeley JE, Moreno JM. 2015. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters 10:114013. http://stacks.iop.org/1748-9326/10/i=11/a=114013?key=crossref.464a9e70dbebd8a2f723e7dd8fdb3490.

  71. Vicente-Serrano SM, Beguería S, López-Moreno JI. 2010. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. Journal of Climate 23:1696–718.

    Article  Google Scholar 

  72. Vilà-Cabrera A, Saura-Mas S, Lloret F. 2008. Effects of fire frequency on species composition in a Mediterranean shrubland. Écoscience 15:519–28.

    Article  Google Scholar 

  73. Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. 2011. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proceedings of the National Academy of Sciences 108:13165–70.

    Article  Google Scholar 

  74. Zylstra PJ. 2018. Flammability dynamics in the Australian Alps. Austral Ecology 43:578–91.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministerio de Economía y Competitividad from the Spanish Government through the INMODES project (CGL2017-89999-C2-2-R) and the TIPMED project (CGL-2017-87176-P). The research leading to these results has also received funding from ‘la Caixa’ Banking Foundation and from the CERCA Programme from Generalitat de Catalunya. Andrea Duane was funded by the Ministerio de Educación, Cultura y Deporte (Spain) (FPU13/00108) and (EST16/00984). Luke Kelly was supported by a Victorian Postdoctoral Research Fellowship, funded by veski on behalf of the Victorian Government, and the ARC Centre of Excellence for Environmental Decisions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Duane.

Additional information

Author Contributions

AD, LK EB and LB conceived the original idea for the study; AD collected the data; AD, LK, KG and MM analysed the data; AD led the writing with substantial contributions from all authors, on each version of the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19420 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duane, A., Kelly, L., Giljohann, K. et al. Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes. Ecosystems 22, 1338–1351 (2019). https://doi.org/10.1007/s10021-019-00340-6

Download citation

Key words

  • burnt area
  • climate change
  • fire management
  • fire weather
  • fire leverage
  • forest connectivity
  • hierarchical model
  • Mediterranean-type ecosystem
  • negative feedbacks
  • wind-driven fires