Nitrogen Retention of Terricolous Lichens in a Northern Alberta Jack Pine Forest

Abstract

The Athabasca Oil Sands in Alberta, Canada, is one of the largest point sources of nitrogen oxides in Canada. There are concerns that elevated nitrogen (N) deposition will adversely impact forest ecosystems located downwind of emission sources. The role of the forest floor in regulating these potential eutrophication effects was investigated following a 5-year enrichment study in which N was applied as NH4NO3 above the canopy of a jack pine (Pinus banksiana Lamb) stand in northern Alberta close to Fort McMurray at rates ranging from 5 to 25 kg N ha−1 y−1 in addition to background deposition of approximately 2 kg N ha−1 y−1. Chemical analysis of lichen mats revealed that the N concentration in the apical (upper) lichen tissue and necrotic tissue increased with treatment. When expressed as a N pool, the fibric–humic material held the largest quantity of N across all treatments due to its relatively large mass (172–214 kg N ha−1), but there was no significant treatment effect. Soil net N mineralization and net nitrification rates did not differ among N treatments after five years of application. A 15N tracer applied to the forest floor showed that N is initially absorbed by the apical lichen (16.6% recovery), FH material (29.4% recovery), and the foliage of the vascular plant Vaccinium myrtilloides (31.7% recovery) in particular. After 2 years, the FH 15N pool size was elevated and all other measured pools were depleted, indicating a slow transfer of N to the FH material. Applied 15N was not detectable in mineral soil. The microbial functional gene ammonia monooxygenase (amoA) responsible for catalyzing the first step in nitrification was undetectable using PCR screening of mineral soil microbial communities in all treatments, and broad fungal/bacterial qPCR assays revealed a weak treatment effect on fungal: bacterial ratios in mineral soil with decreasing relative fungal abundance under higher N deposition. This work suggests that terricolous lichen mats, which form the majority of ground cover in upland jack pine systems, have a large capacity to effectively retain elevated N deposition in soil humus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abdelbaki AM. 2018. Evaluation of pedotransfer functions for predicting soil bulk density for U.S. soils. Ain Shams Eng J 9(4):1611–19. https://doi.org/10.1016/j.asej.2016.12.002.

    Article  Google Scholar 

  2. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen saturation in northern forest ecosystem. Bioscience 39:378–86.

    Article  Google Scholar 

  3. Akselsson C, Belyazid S, Hellsten S, Klarqvist M, Pihl-Karlsson G, Karlsson PE, Lundin L. 2010. Assessing the risk of N leaching from forest soils across a steep N deposition gradient in Sweden. Environ Pollut 158:3588–95.

    Article  CAS  PubMed  Google Scholar 

  4. Allison SD, Czimczik CI, Treseder KK. 2008. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob Change Biol 14:1156–68.

    Article  Google Scholar 

  5. Baddeley JA, Woodin SJ, Alexander IJ, Ecology F, Dec N. 1994. Effects of increased nitrogen and phosphorus availability on the photosynthesis and nutrient relations of three arctic dwarf shrubs from Svalbard. Funct Ecol 8:676–85.

    Article  Google Scholar 

  6. Bago B, Zipfel W, Williams RM, Jun J, Arreola R, Lammers PJ, Pfeffer PE, Shachar-Hill Y. 2002. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Baptista JDC, Lunn M, Davenport RJ, Swan DL, Read LF, Brown MR, Morais C, Curtis TP. 2014. Agreement between amoA gene-specific quantitative PCR and fluorescence in situ hybridization in the measurement of ammonia-oxidizing bacteria in activated sludge. Appl Environ Microbiol 80:5901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beier C, Emmett BA, Peñuelas J, Schmidt IK, Tietema A, Estiarte M, Gundersen P, Llorens L, Riis-Nielsen T, Sowerby A, Gorissen A. 2008. Carbon and nitrogen cycles in European ecosystems respond differently to global warming. Sci Total Environ 407:692–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59.

    Article  CAS  PubMed  Google Scholar 

  10. Britton AJ, Fisher JM. 2010. Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition. Environ Pollut 158:1296–302.

    Article  CAS  PubMed  Google Scholar 

  11. Bytnerowicz A, Fraczek W, Schilling S, Alexander D. 2010. Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta. J Limnol 69:11–21.

    Article  Google Scholar 

  12. Canada E. 2011. Station results—historical data. http://climate.weather.gc.ca/climateData/dailydata_e.html?StationID=27216. Accessed June 2015.

  13. Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH, Henry GHR, Shaver GR, Phoenix GK, Jones DG, Jonasson S, Chapin FS, Molau U, Neill C, Lee JA, Melillo JM, Sveinbjörnsson B, Aerts R. 2001. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–94.

    Article  Google Scholar 

  14. Crittenden PD. 1991. Ecological significance of necromass production in mat-forming lichens. Lichenol 23:323–31.

    Article  Google Scholar 

  15. Demoling F, Ola Nilsson L, Bååth E. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem 40:370–9.

    Article  CAS  Google Scholar 

  16. Dick WA, Tabatabai MA. 1979. Ion chromatographic determination of sulfate and nitrate in soils 1. Soil Sci Soc Am J 43:899–904.

    Article  CAS  Google Scholar 

  17. Driscoll CT, Whitall D, Aber J, Elizabeth Boyer MC, Cronan C, Goodale CL, Peter Groffman CH, Lambert K, Gregory Lawrence ASO. 2003. Nitrogen pollution in the northeastern United States: sources, effects, and management options. Bioscience 53:357–74.

    Article  Google Scholar 

  18. Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft C. 2003. The natural abundance of 15N in mat-forming lichens. Oecologia 136:115–23.

    Article  PubMed  Google Scholar 

  19. Ellis CJ, Crittenden PD, Scrimgeour CM, Ashcroft CJ. 2005. Translocation of 15N indicates nitrogen recycling in the mat-forming lichen Cladonia portentosa. New Phytol 168:423–34.

    Article  CAS  PubMed  Google Scholar 

  20. Emmett BA, Boxman D, Bredemeier M, Gundersen P, Kjønaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1:352–60.

    Article  CAS  Google Scholar 

  21. Fenn ME, Bytnerowicz A, Schilling SL, Ross CS. 2015. Atmospheric deposition of nitrogen, sulfur and base cations in jack pine stands in the Athabasca Oil Sands Region, Alberta, Canada. Environ Pollut 196:497–510.

    Article  CAS  PubMed  Google Scholar 

  22. Fenn ME, Nagel HD, Koseva I, Aherne J, Jovan SE, Geiser LH, Schlutow A, Scheuschner T, Bytnerowicz A, Gimeno BS, Yuan F, Watmough SA, Allen EB, Johnson RF, Meixnert T. 2014. A comparison of empirical and modelled nitrogen critical loads for mediterranean forests and shrublands in California. Nitrogen Depos Crit Loads Biodivers Proc Int Nitrogen Initiat Work Link Expert Conv Long-Range Transbound Air Pollut Conv Biol Divers. pp 357–68.

  23. Fenn MME, Baron JSJ, Allen EBE, Rueth HMH, Nydick KRK, Geiser L, Bowman WWD, Sickman JJO, Meixner T, Johnson DDW, Neitlich P. 2003. Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404.

    Article  Google Scholar 

  24. Fierer N, Jackson J. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ. 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226.

    Article  CAS  Google Scholar 

  26. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Greenfield LG. 1992. Short note retention of precipitation nitrogen by Antarctic mosses, lichens and fellfield soils. Antarct Sci 4:205–6.

    Article  Google Scholar 

  28. Hart SC, Nason GE, Myrold DD, Perry DA. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–91.

    Article  Google Scholar 

  29. Högberg MN, Bååth E, Nordgren A, Arnebrant K, Högberg P. 2003. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forest. New Phytol 160:225–38.

    Article  CAS  Google Scholar 

  30. Högberg MN, Chen Y, Högberg P. 2007. Gross nitrogen mineralisation and fungi-to-bacteria ratios are negatively correlated in boreal forests. Biol Fertil Soils 44:363–6.

    Article  Google Scholar 

  31. Hyvärinen M, Crittenden PD. 1998. Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytol 140:519–30.

    Article  Google Scholar 

  32. Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S. 2017. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat Commun 8:1–8.

    Article  CAS  Google Scholar 

  33. Kytöviita MM, Crittenden PD. 2007. Growth and nitrogen relations in the mat-forming lichens Stereocaulon paschale and Cladonia stellaris. Ann Bot 100:1537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levy-Booth DJ, Prescott CE, Grayston SJ. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25.

    Article  CAS  Google Scholar 

  35. Lovett GM, Goodale CL. 2011. A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–31.

    Article  CAS  Google Scholar 

  36. Masse J, Prescott CE, Müller C, Grayston SJ. 2016. Gross nitrogen transformation rates differ in reconstructed oil-sand soils from natural boreal-forest soils as revealed using a15N tracing method. Geoderma 282:37–48.

    Article  CAS  Google Scholar 

  37. Matson A, Pennock D, Bedard-Haughn A. 2009. Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada. For Ecol Manag 258:1073–83.

    Article  Google Scholar 

  38. Mitchell RJ, Truscot AM, Leith ID, Cape JN, Van Dijk N, Tang YS, Fowler D, Sutton MA. 2005. A study of the epiphytic communities of Atlantic oak woods along an atmospheric nitrogen deposition gradient. J Ecol 93:482–92.

    Article  CAS  Google Scholar 

  39. Munzi S, Sheppard LJ, Leith ID, Cruz C, Branquinho C, Bini L, Gagliardi A, Cai G, Parrotta L. 2017. The cost of surviving nitrogen excess: energy and protein demand in the lichen Cladonia portentosa as revealed by proteomic analysis. Planta 245:819–33.

    Article  CAS  PubMed  Google Scholar 

  40. Nadkarni M, Martin FE, Jacques NA, Hunter N. 2002. Determination of bacterial load by real-time PCR using a broad range (universal) probe and primer set. Microbiology 148:257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Neuwirth E. 2014. RColorBrewer: ColorBrewer palettes. R Package version 11–2:https://cran.R-project.org/package=RColorBrewer. Accessed Aug 2017.

  42. Nieboer E, Richardson DHS, Tomassini FD. 1978. Mineral uptake and release by lichens: an overview. Bryologist 81:226–46.

    Article  CAS  Google Scholar 

  43. Nihlgard B. 1985. The ammonium hypothesis: an additional explanation to the forest dieback in Europe. Ambio 14:2–8.

    Google Scholar 

  44. Nordin A, Näsholm T, Ericson L. 1998. Effects of simulated N deposition on understorey vegetation of a boreal coniferous forest. Funct Ecol 12:691–9.

    Article  Google Scholar 

  45. Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gundersen P, Kjønaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W. 2006. Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry 80:143–71.

    Article  Google Scholar 

  46. Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA, Press JMC, Lee AA. 1994. Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–18.

    Article  Google Scholar 

  47. Perakis SS, Sinkhorn ER. 2011. Biogeochemistry of a temperate forest nitrogen gradient. Ecology 92:1481–91.

    Article  PubMed  Google Scholar 

  48. Phoenix GK, Emmett BA, Britton AJ, Caporn SJM, Dise NB, Helliwell R, Jones L, Leake JR, Leith ID, Sheppard LJ, Sowerby A, Pilkington MG, Rowe EC, Ashmore MR, Power SA. 2012. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob Change Biol 18:1197–215.

    Article  Google Scholar 

  49. R Core Team. 2017. R: a language and environment for statistical computing. R Found Stat Comput. Vienna, Austria. https://www.R-project.org. Accessed Nov 2017.

  50. Robinson D. 2001. δ 15N as an integrator of the nitrogen. Trends Ecol Evol 16:153–62.

    Article  CAS  Google Scholar 

  51. Robinson D. 2017. broom: convert statistical analysis objects into tidy data frames. R package version 0.4.3.

  52. Rotthauwe JH, Witzel KP, Liesack W. 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Soil Classification Working Group. 1998. The Canadian System of Soil Classification. Can Syst Soil Classif, 3rd ed, Agric Agri-Food Canada Publ 1646:187.

  54. Ste-Marie C, Paré D. 1999. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31:1579–89.

    Article  CAS  Google Scholar 

  55. Stephen JR, Chang YJ, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC. 1999. Effect of toxic metals on indigenous soil β-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol 65:95–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Strickland MS, Rousk J. 2010. Considering fungal: bacterial dominance in soils - Methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–95.

    Article  CAS  Google Scholar 

  57. Templer PH, Mack MC, Chapin FS, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail DB, D’Antonio CM, Emmett BA, Epstein HE, Goodale CL, Gundersen P, Hobbie SE, Holland K, Hooper DU, Hungate BA, Lamontagne S, Nadelhoffer KJ, Osenberg CW, Perakis SS, Schleppi P, Schimel J, Schmidt IK, Sommerkorn M, Spoelstra J, Tietema A, Wessel WW, Zak DR. 2012. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies. Ecology 93:1816–29.

    Article  CAS  PubMed  Google Scholar 

  58. Tietema A, Boxman AW, Bredemeier M, Emmett BA, Moldan F, Gundersen P, Schleppi P, Wright RF. 1998a. Nitrogen saturation experiments (NITREX) in coniferous forest ecosystems in Europe: a summary of results. Environ Pollut 102:433–7.

    Article  CAS  Google Scholar 

  59. Tietema A, Emmett BA, Gundersen P, Janne Kjønaas O, Koopmans CJ. 1998b. The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For Ecol Manag 101:19–27.

    Article  Google Scholar 

  60. Tuominen Y. 1967. Studies on the strontium uptake of the Cladonia alpestris thallus. In: Annales Botanici Fennici. JSTOR. pp 1–28.

  61. Wallenstein MD, McNulty S, Fernandez IJ, Boggs J, Schlesinger WH. 2006. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. For Ecol Manage 222:459–68.

    Article  Google Scholar 

  62. Watmough SA, Bird A, Mcdonough A, Grimm E. 2018. Forest fertilization associated with oil sands emissions. Ecosystems 1–14. https://doi.org/10.1007/s10021-018-0249-x.

  63. Watmough SA, Whitfield CJ, Fenn ME. 2014. The importance of atmospheric base cation deposition for preventing soil acidification in the Athabasca Oil Sands Region of Canada. Sci Total Environ 493:1–11.

    Article  CAS  PubMed  Google Scholar 

  64. Wickham H. 2016. ggplot2. Create elegant data visualizations using the grammar of graphics. R package version 2.1.0. https://cran.r-project.org/web/packages/ggplot2/index.html. Accessed June 2016.

  65. Wright RF, van Breemen N. 1995. The (NITREX) project: an introduction. For Ecol Manage 71(1-2):1–5. https://doi.org/10.1016/0378-1127(94)06080-3.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by CEMA (Cumulative Environmental Management Association). The authors would like to thank our laboratory and field staff at Trent University: Sylvie Danse, Katie Mitchell, Eric Grimm, Liam Murray, Liana Orlovskaya, and Jaqueline London. We would also like to thank our close collaborators Shanti Berryman and Justin Straker of Integral Ecology Group.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam Bird.

Additional information

Author Contributions

AB wrote the paper, performed field research, performed laboratory analysis, and analyzed data; SAW conceived of study and edited paper; NB contributed laboratory facilities, designed microbial methodology, and edited paper; MAC designed microbial methodology, performed laboratory analysis, and edited paper; AM designed isotope experiment, performed field research, and edited paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bird, A., Watmough, S.A., Carson, M.A. et al. Nitrogen Retention of Terricolous Lichens in a Northern Alberta Jack Pine Forest. Ecosystems 22, 1308–1324 (2019). https://doi.org/10.1007/s10021-019-00337-1

Download citation

Keywords

  • nitrogen
  • oil sands
  • eutrophication
  • lichens
  • nitrogen saturation