Skip to main content
Log in

Coastal Wetland Distributions: Delineating Domains of Macroscale Drivers and Local Feedbacks

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

How do multiple stable states influence local and macroscale ecological patterns? Understanding how local feedbacks operate within heterogeneous coastal environments is essential to forecasting marsh persistence and loss in response to sea level rise, river impoundment, and other environmental changes. In coastal lagoons, feedbacks between open water, wind erosion, and stabilizing effects from wetland vegetation produce two states: open water with fringing marshes, and marsh-dominated basins. Unknown is whether, how, and at what scales these feedbacks affect distribution of marsh ecosystems in large, complex estuaries, where macroscale coastal and watershed characteristics control suspended sediment and wind energy. Using a multi-scale geospatial analysis spanning the Atlantic and Gulf coasts of the USA, we show that characteristics of estuaries (depth, shoreline complexity, land use, tidal range, latitude) and their watersheds (discharge) best predict wetland extent at broad spatial scales (~> 102 km2). Bimodal distribution of wetland extent occurs at finer scales (~ 100 to 102 km2) that correspond to the theoretical scale of wave erosion feedbacks. Local feedbacks are thus the mechanism that controls marsh dynamics, whereas coastal and watershed characteristics determine macroscale wetland distributions through their effects on these processes. In coastal marshes, and likely in other complex landscapes, the spatial extent of feedbacks shapes the scales at which local and macroscale processes control the distribution of alternative stable states. These findings help predict scales at which coastal wetlands will respond catastrophically or continuously to environmental change, and provide a basis for multi-scale strategies to protect and restore coastal wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ardhuin F, O’Reilly WC, Herbers THC, Jessen PF. 2003. Swell transformation across the continental shelf. Part I: attenuation and directional broadening. J Phys Oceanogr 33:1921–39.

    Article  Google Scholar 

  • Bevington AE, Twilley RR, Sasser CE, Holm GO. 2017. Contribution of river floods, hurricanes, and cold fronts to elevation change in a prograding deltaic floodplain in the northern Gulf of Mexico, USA. Estuar Coast Shelf Sci 191:188–200. https://doi.org/10.1016/j.ecss.2017.04.010.

    Article  Google Scholar 

  • Braswell AE. 2017. Spatial and temporal drivers of coastal wetland formation and persistence. Dissertation, Duke University. Retrieved from: https://hdl.handle.net/10161/16388. Last accessed 10/10/2018.

  • Conservation Biology Institute. 2010. Global Average Annual Surface Runoff, 1950–2000. ESRI. http://www.arcgis.com/home/item.html?id=c5a76c73d0874e4c8d5bdb3bd40f2ed8. Last accessed 01/01/2017.

  • Coverdale TC, Herrmann NC, Altieri AH, Bertness MD. 2013. Latent impacts: the role of historical human activity in coastal habitat loss. Front Ecol Environ 11:69–74. https://doi.org/10.1890/120130.

    Article  Google Scholar 

  • de Boer DH. 1992. Hierarchies and spatial scale in process geomorphology: a review. Geomorphology 4:303–18.

    Article  Google Scholar 

  • Dekker SC, Rietkerk M, Bierkens MFP. 2007. Coupling microscale vegetation–soil water and macroscale vegetation–precipitation feedbacks in semiarid ecosystems. Glob Change Biol 13:671–8.

    Article  Google Scholar 

  • Dong X, Grimm NB, Ogle K, Franklin J. 2016. Temporal variability in hydrology modifies the influence of geomorphology on wetland distribution along a desert stream. J Ecol 104:18–30. https://doi.org/10.1111/1365-2745.12450/full.

    Article  Google Scholar 

  • Fox J, Weisberg S. 2011. An R companion to applied regression. 2nd edn. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Fraley C, Raftery AE. 2002. Model-based clustering, discriminant analysis and density estimation. J Am Stat Assoc 97:611–31.

    Article  Google Scholar 

  • Fraley C, Raftery AE, Murphy TB, Scrucca L. 2012. mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation. Department of Statistics, University of Washington, Technical Report No. 587.

  • Friedrichs CT, Perry JE. 2001. Tidal salt marsh morphodynamics: a synthesis. J Coast Res 27:7–37.

    Google Scholar 

  • Ganju NK, Defne Z, Kirwan ML, Fagherazzi S, D’Alpaos A, Carniello L. 2017. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat Commun 8:14156. https://doi.org/10.1038/ncomms14156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD. 2009. Centuries of human-driven change in salt marsh ecosystems. Ann Rev Mar Sci 1:117–41. https://doi.org/10.1146/annurev.marine.010908.163930.

    Article  PubMed  Google Scholar 

  • Gittman RK, Fodrie FJ, Popowich AM, Keller DA, Bruno JF, Currin CA, Peterson CH, Piehler MF. 2015. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front Ecol Environ 13:301–7. https://doi.org/10.1890/150065.

    Article  Google Scholar 

  • Hansen AT, Dolph CL, Foufoula-Georgiou E, Finlay JC. 2018. Contribution of wetlands to nitrate removal at the watershed scale. Nat Geosci 11:127. https://doi.org/10.1038/s41561-017-0056-6.

    Article  CAS  Google Scholar 

  • Hayden BP, Santos MCFV, Shao G, Kochel RC. 1995. Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 13:283–300.

    Article  Google Scholar 

  • Heffernan JB. 2008. Wetlands as an alternative stable state in desert streams. Ecology 89:1261–71.

    Article  PubMed  Google Scholar 

  • Heffernan JB, Soranno PA, Angilletta MJ, Buckley LB, Gruner DS, Keitt TH, Kellner JR, Kominoski JS, Rocha AV, Xiao J, Harms TK, Goring SJ, Koenig LE, McDowell WH, Powell H, Richardson AD, Stow CA, Vargas R, Weathers KC. 2014. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front Ecol Environ 12:5–14. https://doi.org/10.1890/130017.

    Article  Google Scholar 

  • Hirota M, Holmgren M, Van Nes EH, Scheffer M. 2011. Global resilience of tropical forest and savanna to critical transitions. Science 334:232–5. https://doi.org/10.1126/science.1210657.

    Article  CAS  PubMed  Google Scholar 

  • Kennish M. 2001. Coastal salt marsh systems in the US: a review of anthropogenic impacts. J Coast Res 17:731–48. https://doi.org/10.2307/4300224.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR. 2010. Influence of tidal range on the stability of coastal marshland. J Geophys Res 115:F02009.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR. 2012. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J Ecol 100:764–70. https://doi.org/10.1111/j.1365-2745.2012.01957.x.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401.

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, Morris JT. 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Change Biol 15:1982–9.

    Article  Google Scholar 

  • Kirwan ML, Murray AB. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci USA 104:6118–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirwan ML, Murray AB. 2008. Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. Geophys Res Lett 35:L24401. https://doi.org/10.1029/2008GL036050.

    Article  Google Scholar 

  • Kirwan ML, Murray AB, Donnelly JP, Corbett DR. 2011. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology 39:507–10.

    Article  Google Scholar 

  • Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S. 2016. Overestimation of marsh vulnerability to sea level rise. Nat Clim Change 6:253–60.

    Article  Google Scholar 

  • Le Hir P, Roberts W, Cazaillet O, Christie M, Bassoullet P, Bacher C. 2000. Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–59.

    Article  Google Scholar 

  • Leonardi N, Fagherazzi S. 2014. How waves shape salt marshes. Geology 42:887–90.

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–9.

    Article  CAS  PubMed  Google Scholar 

  • Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2007. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon. Geophys Res Lett 34:L11402.

    Article  Google Scholar 

  • Marani M, D’Alpaos A, Lanzoni S, Carniello L, Rinaldo A. 2010. The importance of being coupled: stable states and catastrophic shifts in tidal biomorphodynamics. J Geophys Res 115:F04004. https://doi.org/10.1029/2009JF001600.

    Article  Google Scholar 

  • Mariotti G, Fagherazzi S. 2013. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc Natl Acad Sci USA 110:5353–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariotti G, Fagherazzi S, Wiberg PL, McGlathery KJ, Carniello L, Defina A. 2010. Influence of storm surges and sea level on shallow tidal basin erosive processes. J Geophys Res Ocean 115:1–17.

    Google Scholar 

  • Mattheus C, Rodriguez A, McKee BA. 2009. Direct connectivity between upstream and downstream promotes rapid response of lower coastal-plain rivers to land-use change. Geophys Res Lett 36:1–6.

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–60.

    Article  Google Scholar 

  • Milliman JD, Meade RH. 1983. World-wide delivery of river sediment to the oceans. J Geol 91:1–21.

    Article  Google Scholar 

  • Moffett K, Nardin W, Silvestri S, Wang C, Temmerman S. 2015. Multiple stable states and catastrophic shifts in coastal wetlands: progress, challenges, and opportunities in validating theory using remote sensing and other methods. Remote Sens 7:10184–226.

    Article  Google Scholar 

  • Möller I. 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: results from a UK East coast saltmarsh. Estuar Coast Shelf Sci 69:337–51.

    Article  Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR. 2002. Responses of coastal wetlands to rising sea level. Ecology 83:2869–77.

    Article  Google Scholar 

  • Mudd SM, Howell SM, Morris JT. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar Coast Shelf Sci 82:377–89.

    Article  CAS  Google Scholar 

  • National Oceanic and Atmospheric Adminstration. 2016. VDatum software. https://vdatum.noaa.gov/welcome.html. Last accessed 24/02/2017.

  • Ortiz AC, Roy S, Edmonds DA. 2017. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys Res Lett 44:3635–42.

    Article  Google Scholar 

  • Osland MJ, Enwright N, Day RH, Doyle TW. 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19:1482–94.

    Article  PubMed  Google Scholar 

  • Osland MJ, Enwright N, Stagg CL. 2014. Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient. Ecology 95:2789–802.

    Article  Google Scholar 

  • Pennings S, Bertness MD. 2001. Salt marsh communities. In: Bertness MD, Gaines SD, Hay M, Eds. Marine community ecology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Pethick JS. 1981. Long-term accretion rates on tidal salt marshes. J Sediment Res 51:571–7.

    Article  Google Scholar 

  • Redfield A. 1965. Ontogeny of a salt marsh estuary. Science 147:50–5.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, Carpenter SR. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–56.

    Article  Google Scholar 

  • Scheffer M, Hirota M, Holmgren M, Van Nes EH, Chapin FS. 2012. Thresholds for boreal biome transitions. Proc Natl Acad Sci USA 109:21384–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–9.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer M, van Nes EH. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455–66. https://doi.org/10.1007/s10750-007-0616-7.

    Article  CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Wesley JM, Ross VA, Whitford WG. 1990. Biological feedbacks in global desertification. Science 247:1043–8.

    Article  CAS  PubMed  Google Scholar 

  • Sheffer E, von Hardenberg J, Yizhaq H, Shachak M, Meron E. 2013. Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol Lett 16:127–39.

    Article  PubMed  Google Scholar 

  • Silvestri S, Defina A, Marani M. 2005. Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–30.

    Article  CAS  Google Scholar 

  • Stallins JA. 2006. Geomorphology and ecology: unifying themes for complex systems in biogeomorphology. Geomorphology 77:207–16.

    Article  Google Scholar 

  • Staver AC, Archibald S, Levin SA. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science 334:230–2.

    Article  CAS  PubMed  Google Scholar 

  • Stone GW, Zhang X, Sheremet A. 2005. The role of barrier islands, muddy shelf and reefs in mitigating the wave field along coastal Louisiana. J Coast Res 44:40–55.

    Google Scholar 

  • Syvitski JPM, Milliman JD. 2007. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J Geol 115:1–19.

    Article  Google Scholar 

  • Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2:376–80.

    Article  CAS  Google Scholar 

  • Tweel AW, Turner RE. 2012. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol Oceanogr 57:18–28.

    Article  Google Scholar 

  • United States Environmental Protection Agency, United States Geological Survey. 2012. National Hydrography Dataset Plus Version 2. http://www.horizon-systems.com/nhdplus/. Last accessed 30/06/2014.

  • U.S. Fish and Wildlife. 2014. National Wetlands Inventory. http://www.fws.gov/wetlands/. Last accessed 03/04/2014.

  • van de Koppel J, Herman PMJ, Thoolen P, Heip CHR. 2001. Do alternate stable states occur in natural ecosystems? Evidence from a tidal flat. Ecology 82:3449–61.

    Article  Google Scholar 

  • van de Koppel J, van der Wal D, Bakker JP, Herman PMJ. 2005. Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165:E1–12.

    Article  PubMed  Google Scholar 

  • Valiela I, Lloret J, Bowyer T, Miner S, Remsen D, Elmstrom E, Cogswell C, Robert Thieler E. 2018. Transient coastal landscapes: rising sea level threatens salt marshes. Sci Total Environ 640–641:1148–56. https://doi.org/10.1016/j.scitotenv.2018.05.235.

    Article  CAS  PubMed  Google Scholar 

  • Walling DE. 2006. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 79:192–216.

    Article  Google Scholar 

  • Wang C, Temmerman S. 2013. Does biogeomorphic feedback lead to abrupt shifts between alternative landscape states?: An empirical study on intertidal flats and marshes. J Geophys Res Earth Surf 118:229–40.

    Article  Google Scholar 

  • Watson EB, Wigand C, Davey EW, Andrews HM, Bishop J, Raposa KB. 2017. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for Southern New England. Estuaries Coasts 40:662–81.

    Article  CAS  PubMed  Google Scholar 

  • Watts DL, Cohen MJ, Heffernan JB, Osborne TZ. 2010. Hydrologic modification and the loss of self-organized patterning in the ridge-slough mosaic of the everglades. Ecosystems 13:813–27. https://doi.org/10.1007/s10021-010-9356-z.

    Article  Google Scholar 

  • Wetzel RG. 2001. Limnology: lake and river ecosystems. Houston: Gulf Professional Publishing.

    Google Scholar 

  • Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Q Rev Biol 70(4):439–66.

    Article  Google Scholar 

  • Yousefi Lalimi F. 2018. Evolution of coastal landforms: investigating sediment dynamics, hydrodynamics, and vegetation dynamics. Dissertation, Duke University. https://hdl.handle.net/10161/16856. Last accessed 10/10/2018.

  • Zedler JB, Kercher S. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248.

    Article  Google Scholar 

Download references

Acknowledgements

The N.S.F. Geomorphology and Land-use Dynamics grant (# 1530233) and North Carolina Sea Grant (# R/MG-1504) supported this work financially. We thank A. B. Murray, M. Marani, M. Kirwan, X. Dong, M. Doyle, F. Yousefi and anonymous reviewers for discussion and review that improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Braswell.

Additional information

Author Contributions

Both AEB and JBH designed the study and analysis, interpreted the results and wrote the paper. AEB conducted geospatial and statistical data analysis.

Data Accessibility

All data are from publicly available datasets (see Methods and Supporting Information—Appendix A). All code is available upon request from the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 802 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braswell, A.E., Heffernan, J.B. Coastal Wetland Distributions: Delineating Domains of Macroscale Drivers and Local Feedbacks. Ecosystems 22, 1256–1270 (2019). https://doi.org/10.1007/s10021-018-0332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0332-3

Keywords

Navigation