Abstract
Identifying the scales of variation in forest structures and the underlying processes are fundamental for understanding forest dynamics. Here, we studied these scale-dependencies in forest structure in naturally dynamic boreal forests on two continents. We identified the spatial scales at which forest structures varied, and analyzed how the scales of variation and the underlying drivers differed among the regions and at particular scales. We studied three 2 km × 2 km landscapes in northeastern Finland and two in eastern Canada. We estimated canopy cover in contiguous 0.1-ha cells from aerial photographs and used scale-derivative analysis to identify characteristic scales of variation in the canopy cover data. We analyzed the patterns of variation at these scales using Bayesian scale space analysis. We identified structural variation at three spatial scales in each landscape. Among landscapes, the largest scale of variation showed the greatest variability (20.1–321.4 ha), related to topography, soil variability, and long-term disturbance history. Superimposed on this large-scale variation, forest structure varied at similar scales (1.3–2.8 ha) in all landscapes. This variation correlated with recent disturbances, soil variability, and topographic position. We also detected intense variation at the smallest scale analyzed (0.1 ha, grain of our data), partly driven by recent disturbances. The distinct scales of variation indicated hierarchical structure in the landscapes studied. Except for the large-scale variation, these scales were remarkably similar among the landscapes. This suggests that boreal forests may display characteristic scales of variation that occur somewhat independent of the tree species characteristics or the disturbance regime.
Similar content being viewed by others
References
Aakala T. 2018. Forest fire histories and tree age structures in Värriö and Maltio Strict Nature Reserves, Northern Finland. Boreal Env Res (in press).
Aakala T, Kuuluvainen T, De Grandpré L, Gauthier S. 2007. Trees dying standing in the northeastern boreal old-growth forests of Québec: spatial patterns, rates and temporal variation. Canadian Journal of Forest Research 37:50–61.
Aakala T, Kuuluvainen T, Wallenius T, Kauhanen H. 2009. Contrasting patterns of tree mortality in late-successional Picea abies stands in two areas in northern Fennoscandia. Journal of Vegetation Science 20:1016–26.
Aakala T, Shimatani K, Abe T, Kubota Y, Kuuluvainen T. 2016. Crown asymmetry in high latitude forests: disentangling the directional effects of tree competition and solar radiation. Oikos 125:1035–43.
Angelstam P, Kuuluvainen T. 2004. Boreal forest disturbance regimes, successional dynamics and landscape structures: a European perspective. Ecological Bulletins 51:117–36.
Bouchard M, Pothier D. 2010. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Canadian Journal of Forest Research 40:86–94.
Bouchard M, Pothier D, Gauthier S. 2008. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Canadian Journal of Forest Research 38:1621–33.
Boucher D, Gauthier S, De Grandpré L. 2006. Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec. Ecoscience 13:172–80.
Bradshaw CJA, Warkentin IG, Sodhi NS. 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology & Evolution 24:541–8.
D’Aoust V, Kneeshaw D, Bergeron Y. 2004. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Canadian Journal of Forest Research 34:339–52.
De Grandpré L, Morissette J, Gauthier S. 2000. Long-term post-fire changes in the northeastern boreal forest of Québec. Journal of Vegetation Science 11:791–800.
Elkie PC, Rempel RS. 2001. Detecting scales of pattern in boreal forest landscapes. Forest Ecology and Management 147:253–61.
Epstein CL. 2007. Introduction to the mathematics of medical imaging. Philadelphia: Society for Industrial and Applied Mathematics.
Erästö P, Holmström L. 2005. Bayesian multiscale smoothing for making inferences about features in scatterplots. Journal of Computational and Graphical Statistics 14:569–89.
Estes L, Elsen PR, Treuer T, Ahmed L, Caylor K, Chang J, Choi JJ, Ellis EC. 2018. The spatial and termporal domains of modern ecology. Nature Ecology & Evolution 2:819–26.
Gauthier S, Boucher D, Morissette J, De Grandpré L. 2010. Fifty-seven years of composition change in the eastern boreal forest of Canada. Journal of Vegetation Science 21:772–85.
Grenfell R, Aakala T, Kuuluvainen T. 2011. Microsite occupancy and the spatial structure of understorey regeneration in three late-successional Norway spruce forests in Northern Europe. Silva Fennica 45:1093–110.
Habeeb RL, Trebilco J, Wotherspoon S, Johnson CR. 2005. Determining natural scales of ecological systems. Ecological Monographs 75:467–87.
Hamel B, Bélanger N, Paré D. 2004. Productivity of black spruce and Jack pine stands in Quebec as related to climate, site biological features and soil properties. Forest Ecology and Management 191:239–51.
Hay GJ, Dubé P, Bouchard A, Marceau DJ. 2002. A scale-space primer for exploring and quantifying complex landscapes. Ecological Modelling 153:27–49.
Hay GJ. 2014. Visualizing scale-domain manifolds: a multiscale geo-object-based approach. In: Weng JF, Weng Q, Eds. Scale issues in remote sensing. New York: Wiley. p 141–69.
Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr. 2008. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. Forest Science 54:158–66.
Holmström L, Pasanen L, Furrer R, Sain SR. 2011. Scale space multiresolution analysis of random signals. Computational Statistics & Data Analysis 55:2840–55.
Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: topographic position index tools. http://www.jennessent.com/arcgis/land_facets.htm. Accessed 10 October 2017.
Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z. 2006. Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems 9:1128–44.
Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60.
Kuuluvainen T, Kalmari R. 2003. Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Annales Botanici Fennici 40:401–13.
Kuuluvainen T, Aakala T. 2011. Natural forest dynamics in boreal Fennoscandia: a review and a classification. Silva Fennica 45:823–41.
Kuuluvainen T, Syrjänen K, Kalliola R. 1998. Structure of a pristine Picea abies forest in Northeastern Europe. Journal of Vegetation Science 9:563–74.
Kuuluvainen T, Wallenius TH, Kauhanen H, Aakala T, Mikkola K, Demidova N, Ogibin B. 2014. Episodic, patchy disturbances characterize an old-growth Picea abies dominated forest landscape in northeastern Europe. Forest Ecology and Management 320:96–103.
Kuuluvainen T, Hofgaard A, Aakala T, Jonsson BG. 2017. North Fennoscandian mountain forests: history, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management 385:140–9.
Lavoie M, Harper K, Paré D, Bergeron Y. 2007. Spatial pattern in the organic layer and tree growth: a case study from regenerating Picea mariana stands prone to paludification. Journal of Vegetation Science 18:213–22.
Mansuy N, Gauthier S, Robitaille A, Bergeron Y. 2010. The effects of surficial deposit-drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. International Journal of Wildland Fire 19:1083–98.
Niemelä J, Haila Y, Punttila P. 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–68.
Niklasson M, Granström A. 2000. Numbers and sizes of long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–99.
O’Neill RV, DeAngelis DL, Waide JB, Allen THF. 1986. A hierarchical concept of ecosystems. Princeton: Princeton University Press.
Pasanen L, Aakala T, Holmström L. 2018. A scale space approach for estimating the characteristic feature sizes in hierarchical signals. Stat (in press).
Pasanen L, Launonen I, Holmström L. 2013. A scale space multiresolution method for extraction of time series features. Stat 2:273–91.
Pasanen L, Holmström L. 2017. Scale space multiresolution correlation analysis for time series data. Computational Statistics 32:197–218.
Pham AT, De Grandpré L, Gauthier S, Bergeron Y. 2004. Gap dynamics and replacement patterns in gaps of the northeastern boreal forest of Quebec. Canadian Journal of Forest Research 34:353–64.
Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. Sainte-Foy, CA: Les Publications du Québec. (in French)
Roiko-Jokela P. 1980. Maaston korkeus puuntuotantoon vaikuttavana tekijänä Pohjois-Suomessa. Folia Forestalia 452:1–30 (in Finnish with English summary).
Rowe JS. 1972. Forest regions of Canada. Ottawa: Environment Canada.
Ruel J-C, Pin D, Cooper K. 1998. Effect of topography on wind behaviour in a complex terrain. Forestry 71:261–5.
Runkle JR, Yetter TC. 1987. Treefalls revisited: gap dynamics in the Southern Appalachians. Ecology 68:417–24.
Scholes RJ. 2017. Taking the mumbo out of the jumbo: progress towards a robust basis for ecological scaling. Ecosystems 20:4–13.
Seibert J, Stendahl J, Sørensen R. 2007. Topographical influences on soil properties in boreal forests. Geoderma 141:139–48.
Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications 17:1619–37.
Sutinen R, Teirilä A, Pänttäjä M, Sutinen M-L. 2002. Distribution and diversity of tree species with respect to soil electrical characteristics in Finnish Lapland. Canadian Journal of Forest Research 32:1158–70.
Walker X, Johnstone JF. 2014. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environmental Research Letters . https://doi.org/10.1088/1748-9326/9/6/064016.
Wallenius TH, Kuuluvainen T, Vanha-Majamaa I. 2004. Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia. Canadian Journal of Forest Research 34:1400–9.
Wand MP, Jones MC. 1994. Kernel smoothing. London: Chapman and Hall.
Wickland KP, Neff JC. 2008. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47.
Wong CM, Daniels LD. 2016. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Change Biology 23:1926–41.
Wu J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25:367–80.
Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly Review of Biology 70:439–66.
Zhang N, Li H. 2013. Sensitivity and effectiveness and of landscape metric scalograms in determining the characteristic scale of a hierarchically structured landscape. Landscape Ecology 28:343–63.
Acknowledgements
We thank Jacques Duval (Quebec Ministry of Natural Resources and Wildlife) for the aerial photographs and digital elevation models for the Quebecois landscapes, Jussi Lammi and Pasi Myllyniemi (EspaSystems Ltd.), and Ilkka Korpela for support in the stereointerpretation. Antti Ahokas, Nora Arnkil, Stéphane Bourassa, Tapio Kara, Yasuhiro Kubota, Toshihide Hirao, Paavo Ojanen, Maxime Tremblay, and Annukka Valkeapää are thanked for assistance in the field. The project was funded by the Academy of Finland (Project Nos. 252629, 276022), Emil Aaltonen Foundation, and the University of Helsinki Funds.
Author information
Authors and Affiliations
Corresponding author
Additional information
Author Contributions TA designed the study. NK interpreted the aerial photographs, and TA, TK, and LD collected the field data. LP and LH developed the analysis methods, and LP and NK conducted the analyses. NK, LP, and TA wrote the first draft of the paper, and all authors contributed to writing the final version.
Data availability: Calibration data, and the calibrated raster maps of canopy cover produced in this study will be made available in Figshare at https://doi.org/10.1007/s10021-018-0297-2.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kulha, N., Pasanen, L., Holmström, L. et al. At What Scales and Why Does Forest Structure Vary in Naturally Dynamic Boreal Forests? An Analysis of Forest Landscapes on Two Continents. Ecosystems 22, 709–724 (2019). https://doi.org/10.1007/s10021-018-0297-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10021-018-0297-2