Skip to main content
Log in

At What Scales and Why Does Forest Structure Vary in Naturally Dynamic Boreal Forests? An Analysis of Forest Landscapes on Two Continents

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Identifying the scales of variation in forest structures and the underlying processes are fundamental for understanding forest dynamics. Here, we studied these scale-dependencies in forest structure in naturally dynamic boreal forests on two continents. We identified the spatial scales at which forest structures varied, and analyzed how the scales of variation and the underlying drivers differed among the regions and at particular scales. We studied three 2 km × 2 km landscapes in northeastern Finland and two in eastern Canada. We estimated canopy cover in contiguous 0.1-ha cells from aerial photographs and used scale-derivative analysis to identify characteristic scales of variation in the canopy cover data. We analyzed the patterns of variation at these scales using Bayesian scale space analysis. We identified structural variation at three spatial scales in each landscape. Among landscapes, the largest scale of variation showed the greatest variability (20.1–321.4 ha), related to topography, soil variability, and long-term disturbance history. Superimposed on this large-scale variation, forest structure varied at similar scales (1.3–2.8 ha) in all landscapes. This variation correlated with recent disturbances, soil variability, and topographic position. We also detected intense variation at the smallest scale analyzed (0.1 ha, grain of our data), partly driven by recent disturbances. The distinct scales of variation indicated hierarchical structure in the landscapes studied. Except for the large-scale variation, these scales were remarkably similar among the landscapes. This suggests that boreal forests may display characteristic scales of variation that occur somewhat independent of the tree species characteristics or the disturbance regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aakala T. 2018. Forest fire histories and tree age structures in Värriö and Maltio Strict Nature Reserves, Northern Finland. Boreal Env Res (in press).

  • Aakala T, Kuuluvainen T, De Grandpré L, Gauthier S. 2007. Trees dying standing in the northeastern boreal old-growth forests of Québec: spatial patterns, rates and temporal variation. Canadian Journal of Forest Research 37:50–61.

    Article  Google Scholar 

  • Aakala T, Kuuluvainen T, Wallenius T, Kauhanen H. 2009. Contrasting patterns of tree mortality in late-successional Picea abies stands in two areas in northern Fennoscandia. Journal of Vegetation Science 20:1016–26.

    Article  Google Scholar 

  • Aakala T, Shimatani K, Abe T, Kubota Y, Kuuluvainen T. 2016. Crown asymmetry in high latitude forests: disentangling the directional effects of tree competition and solar radiation. Oikos 125:1035–43.

    Article  Google Scholar 

  • Angelstam P, Kuuluvainen T. 2004. Boreal forest disturbance regimes, successional dynamics and landscape structures: a European perspective. Ecological Bulletins 51:117–36.

    Google Scholar 

  • Bouchard M, Pothier D. 2010. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Canadian Journal of Forest Research 40:86–94.

    Article  Google Scholar 

  • Bouchard M, Pothier D, Gauthier S. 2008. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Canadian Journal of Forest Research 38:1621–33.

    Article  Google Scholar 

  • Boucher D, Gauthier S, De Grandpré L. 2006. Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec. Ecoscience 13:172–80.

    Article  Google Scholar 

  • Bradshaw CJA, Warkentin IG, Sodhi NS. 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology & Evolution 24:541–8.

    Article  Google Scholar 

  • D’Aoust V, Kneeshaw D, Bergeron Y. 2004. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Canadian Journal of Forest Research 34:339–52.

    Article  Google Scholar 

  • De Grandpré L, Morissette J, Gauthier S. 2000. Long-term post-fire changes in the northeastern boreal forest of Québec. Journal of Vegetation Science 11:791–800.

    Article  Google Scholar 

  • Elkie PC, Rempel RS. 2001. Detecting scales of pattern in boreal forest landscapes. Forest Ecology and Management 147:253–61.

    Article  Google Scholar 

  • Epstein CL. 2007. Introduction to the mathematics of medical imaging. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Erästö P, Holmström L. 2005. Bayesian multiscale smoothing for making inferences about features in scatterplots. Journal of Computational and Graphical Statistics 14:569–89.

    Article  Google Scholar 

  • Estes L, Elsen PR, Treuer T, Ahmed L, Caylor K, Chang J, Choi JJ, Ellis EC. 2018. The spatial and termporal domains of modern ecology. Nature Ecology & Evolution 2:819–26.

    Article  Google Scholar 

  • Gauthier S, Boucher D, Morissette J, De Grandpré L. 2010. Fifty-seven years of composition change in the eastern boreal forest of Canada. Journal of Vegetation Science 21:772–85.

    Google Scholar 

  • Grenfell R, Aakala T, Kuuluvainen T. 2011. Microsite occupancy and the spatial structure of understorey regeneration in three late-successional Norway spruce forests in Northern Europe. Silva Fennica 45:1093–110.

    Article  Google Scholar 

  • Habeeb RL, Trebilco J, Wotherspoon S, Johnson CR. 2005. Determining natural scales of ecological systems. Ecological Monographs 75:467–87.

    Article  Google Scholar 

  • Hamel B, Bélanger N, Paré D. 2004. Productivity of black spruce and Jack pine stands in Quebec as related to climate, site biological features and soil properties. Forest Ecology and Management 191:239–51.

    Article  Google Scholar 

  • Hay GJ, Dubé P, Bouchard A, Marceau DJ. 2002. A scale-space primer for exploring and quantifying complex landscapes. Ecological Modelling 153:27–49.

    Article  Google Scholar 

  • Hay GJ. 2014. Visualizing scale-domain manifolds: a multiscale geo-object-based approach. In: Weng JF, Weng Q, Eds. Scale issues in remote sensing. New York: Wiley. p 141–69.

    Google Scholar 

  • Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr. 2008. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. Forest Science 54:158–66.

    Google Scholar 

  • Holmström L, Pasanen L, Furrer R, Sain SR. 2011. Scale space multiresolution analysis of random signals. Computational Statistics & Data Analysis 55:2840–55.

    Article  Google Scholar 

  • Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: topographic position index tools. http://www.jennessent.com/arcgis/land_facets.htm. Accessed 10 October 2017.

  • Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z. 2006. Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems 9:1128–44.

    Article  Google Scholar 

  • Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60.

    Article  Google Scholar 

  • Kuuluvainen T, Kalmari R. 2003. Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Annales Botanici Fennici 40:401–13.

    Google Scholar 

  • Kuuluvainen T, Aakala T. 2011. Natural forest dynamics in boreal Fennoscandia: a review and a classification. Silva Fennica 45:823–41.

    Article  Google Scholar 

  • Kuuluvainen T, Syrjänen K, Kalliola R. 1998. Structure of a pristine Picea abies forest in Northeastern Europe. Journal of Vegetation Science 9:563–74.

    Article  Google Scholar 

  • Kuuluvainen T, Wallenius TH, Kauhanen H, Aakala T, Mikkola K, Demidova N, Ogibin B. 2014. Episodic, patchy disturbances characterize an old-growth Picea abies dominated forest landscape in northeastern Europe. Forest Ecology and Management 320:96–103.

    Article  Google Scholar 

  • Kuuluvainen T, Hofgaard A, Aakala T, Jonsson BG. 2017. North Fennoscandian mountain forests: history, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management 385:140–9.

    Article  Google Scholar 

  • Lavoie M, Harper K, Paré D, Bergeron Y. 2007. Spatial pattern in the organic layer and tree growth: a case study from regenerating Picea mariana stands prone to paludification. Journal of Vegetation Science 18:213–22.

    Article  Google Scholar 

  • Mansuy N, Gauthier S, Robitaille A, Bergeron Y. 2010. The effects of surficial deposit-drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. International Journal of Wildland Fire 19:1083–98.

    Article  Google Scholar 

  • Niemelä J, Haila Y, Punttila P. 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–68.

    Article  Google Scholar 

  • Niklasson M, Granström A. 2000. Numbers and sizes of long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–99.

    Article  Google Scholar 

  • O’Neill RV, DeAngelis DL, Waide JB, Allen THF. 1986. A hierarchical concept of ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Pasanen L, Aakala T, Holmström L. 2018. A scale space approach for estimating the characteristic feature sizes in hierarchical signals. Stat (in press).

  • Pasanen L, Launonen I, Holmström L. 2013. A scale space multiresolution method for extraction of time series features. Stat 2:273–91.

    Article  Google Scholar 

  • Pasanen L, Holmström L. 2017. Scale space multiresolution correlation analysis for time series data. Computational Statistics 32:197–218.

    Article  Google Scholar 

  • Pham AT, De Grandpré L, Gauthier S, Bergeron Y. 2004. Gap dynamics and replacement patterns in gaps of the northeastern boreal forest of Quebec. Canadian Journal of Forest Research 34:353–64.

    Article  Google Scholar 

  • Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. Sainte-Foy, CA: Les Publications du Québec. (in French)

    Google Scholar 

  • Roiko-Jokela P. 1980. Maaston korkeus puuntuotantoon vaikuttavana tekijänä Pohjois-Suomessa. Folia Forestalia 452:1–30 (in Finnish with English summary).

    Google Scholar 

  • Rowe JS. 1972. Forest regions of Canada. Ottawa: Environment Canada.

    Google Scholar 

  • Ruel J-C, Pin D, Cooper K. 1998. Effect of topography on wind behaviour in a complex terrain. Forestry 71:261–5.

    Article  Google Scholar 

  • Runkle JR, Yetter TC. 1987. Treefalls revisited: gap dynamics in the Southern Appalachians. Ecology 68:417–24.

    Article  Google Scholar 

  • Scholes RJ. 2017. Taking the mumbo out of the jumbo: progress towards a robust basis for ecological scaling. Ecosystems 20:4–13.

    Article  Google Scholar 

  • Seibert J, Stendahl J, Sørensen R. 2007. Topographical influences on soil properties in boreal forests. Geoderma 141:139–48.

    Article  CAS  Google Scholar 

  • Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications 17:1619–37.

    Article  PubMed  Google Scholar 

  • Sutinen R, Teirilä A, Pänttäjä M, Sutinen M-L. 2002. Distribution and diversity of tree species with respect to soil electrical characteristics in Finnish Lapland. Canadian Journal of Forest Research 32:1158–70.

    Article  Google Scholar 

  • Walker X, Johnstone JF. 2014. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environmental Research Letters . https://doi.org/10.1088/1748-9326/9/6/064016.

    Article  Google Scholar 

  • Wallenius TH, Kuuluvainen T, Vanha-Majamaa I. 2004. Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia. Canadian Journal of Forest Research 34:1400–9.

    Article  Google Scholar 

  • Wand MP, Jones MC. 1994. Kernel smoothing. London: Chapman and Hall.

    Book  Google Scholar 

  • Wickland KP, Neff JC. 2008. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47.

    Article  Google Scholar 

  • Wong CM, Daniels LD. 2016. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Change Biology 23:1926–41.

    Article  PubMed  Google Scholar 

  • Wu J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25:367–80.

    Article  Google Scholar 

  • Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly Review of Biology 70:439–66.

    Article  Google Scholar 

  • Zhang N, Li H. 2013. Sensitivity and effectiveness and of landscape metric scalograms in determining the characteristic scale of a hierarchically structured landscape. Landscape Ecology 28:343–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jacques Duval (Quebec Ministry of Natural Resources and Wildlife) for the aerial photographs and digital elevation models for the Quebecois landscapes, Jussi Lammi and Pasi Myllyniemi (EspaSystems Ltd.), and Ilkka Korpela for support in the stereointerpretation. Antti Ahokas, Nora Arnkil, Stéphane Bourassa, Tapio Kara, Yasuhiro Kubota, Toshihide Hirao, Paavo Ojanen, Maxime Tremblay, and Annukka Valkeapää are thanked for assistance in the field. The project was funded by the Academy of Finland (Project Nos. 252629, 276022), Emil Aaltonen Foundation, and the University of Helsinki Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko Kulha.

Additional information

Author Contributions TA designed the study. NK interpreted the aerial photographs, and TA, TK, and LD collected the field data. LP and LH developed the analysis methods, and LP and NK conducted the analyses. NK, LP, and TA wrote the first draft of the paper, and all authors contributed to writing the final version.

Data availability: Calibration data, and the calibrated raster maps of canopy cover produced in this study will be made available in Figshare at https://doi.org/10.1007/s10021-018-0297-2.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulha, N., Pasanen, L., Holmström, L. et al. At What Scales and Why Does Forest Structure Vary in Naturally Dynamic Boreal Forests? An Analysis of Forest Landscapes on Two Continents. Ecosystems 22, 709–724 (2019). https://doi.org/10.1007/s10021-018-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0297-2

Key words

Navigation