, Volume 22, Issue 4, pp 709–724 | Cite as

At What Scales and Why Does Forest Structure Vary in Naturally Dynamic Boreal Forests? An Analysis of Forest Landscapes on Two Continents

  • Niko KulhaEmail author
  • Leena Pasanen
  • Lasse Holmström
  • Louis De Grandpré
  • Timo Kuuluvainen
  • Tuomas Aakala


Identifying the scales of variation in forest structures and the underlying processes are fundamental for understanding forest dynamics. Here, we studied these scale-dependencies in forest structure in naturally dynamic boreal forests on two continents. We identified the spatial scales at which forest structures varied, and analyzed how the scales of variation and the underlying drivers differed among the regions and at particular scales. We studied three 2 km × 2 km landscapes in northeastern Finland and two in eastern Canada. We estimated canopy cover in contiguous 0.1-ha cells from aerial photographs and used scale-derivative analysis to identify characteristic scales of variation in the canopy cover data. We analyzed the patterns of variation at these scales using Bayesian scale space analysis. We identified structural variation at three spatial scales in each landscape. Among landscapes, the largest scale of variation showed the greatest variability (20.1–321.4 ha), related to topography, soil variability, and long-term disturbance history. Superimposed on this large-scale variation, forest structure varied at similar scales (1.3–2.8 ha) in all landscapes. This variation correlated with recent disturbances, soil variability, and topographic position. We also detected intense variation at the smallest scale analyzed (0.1 ha, grain of our data), partly driven by recent disturbances. The distinct scales of variation indicated hierarchical structure in the landscapes studied. Except for the large-scale variation, these scales were remarkably similar among the landscapes. This suggests that boreal forests may display characteristic scales of variation that occur somewhat independent of the tree species characteristics or the disturbance regime.

Key words

forest dynamics canopy cover aerial photography Bayesian inference Eastern Canada Northern Fennoscandia 



We thank Jacques Duval (Quebec Ministry of Natural Resources and Wildlife) for the aerial photographs and digital elevation models for the Quebecois landscapes, Jussi Lammi and Pasi Myllyniemi (EspaSystems Ltd.), and Ilkka Korpela for support in the stereointerpretation. Antti Ahokas, Nora Arnkil, Stéphane Bourassa, Tapio Kara, Yasuhiro Kubota, Toshihide Hirao, Paavo Ojanen, Maxime Tremblay, and Annukka Valkeapää are thanked for assistance in the field. The project was funded by the Academy of Finland (Project Nos. 252629, 276022), Emil Aaltonen Foundation, and the University of Helsinki Funds.

Supplementary material

10021_2018_297_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3498 kb)


  1. Aakala T. 2018. Forest fire histories and tree age structures in Värriö and Maltio Strict Nature Reserves, Northern Finland. Boreal Env Res (in press).Google Scholar
  2. Aakala T, Kuuluvainen T, De Grandpré L, Gauthier S. 2007. Trees dying standing in the northeastern boreal old-growth forests of Québec: spatial patterns, rates and temporal variation. Canadian Journal of Forest Research 37:50–61.CrossRefGoogle Scholar
  3. Aakala T, Kuuluvainen T, Wallenius T, Kauhanen H. 2009. Contrasting patterns of tree mortality in late-successional Picea abies stands in two areas in northern Fennoscandia. Journal of Vegetation Science 20:1016–26.CrossRefGoogle Scholar
  4. Aakala T, Shimatani K, Abe T, Kubota Y, Kuuluvainen T. 2016. Crown asymmetry in high latitude forests: disentangling the directional effects of tree competition and solar radiation. Oikos 125:1035–43.CrossRefGoogle Scholar
  5. Angelstam P, Kuuluvainen T. 2004. Boreal forest disturbance regimes, successional dynamics and landscape structures: a European perspective. Ecological Bulletins 51:117–36.Google Scholar
  6. Bouchard M, Pothier D. 2010. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Canadian Journal of Forest Research 40:86–94.CrossRefGoogle Scholar
  7. Bouchard M, Pothier D, Gauthier S. 2008. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Canadian Journal of Forest Research 38:1621–33.CrossRefGoogle Scholar
  8. Boucher D, Gauthier S, De Grandpré L. 2006. Structural changes in coniferous stands along a chronosequence and a productivity gradient in the northeastern boreal forest of Québec. Ecoscience 13:172–80.CrossRefGoogle Scholar
  9. Bradshaw CJA, Warkentin IG, Sodhi NS. 2009. Urgent preservation of boreal carbon stocks and biodiversity. Trends in Ecology & Evolution 24:541–8.CrossRefGoogle Scholar
  10. D’Aoust V, Kneeshaw D, Bergeron Y. 2004. Characterization of canopy openness before and after a spruce budworm outbreak in the southern boreal forest. Canadian Journal of Forest Research 34:339–52.CrossRefGoogle Scholar
  11. De Grandpré L, Morissette J, Gauthier S. 2000. Long-term post-fire changes in the northeastern boreal forest of Québec. Journal of Vegetation Science 11:791–800.CrossRefGoogle Scholar
  12. Elkie PC, Rempel RS. 2001. Detecting scales of pattern in boreal forest landscapes. Forest Ecology and Management 147:253–61.CrossRefGoogle Scholar
  13. Epstein CL. 2007. Introduction to the mathematics of medical imaging. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  14. Erästö P, Holmström L. 2005. Bayesian multiscale smoothing for making inferences about features in scatterplots. Journal of Computational and Graphical Statistics 14:569–89.CrossRefGoogle Scholar
  15. Estes L, Elsen PR, Treuer T, Ahmed L, Caylor K, Chang J, Choi JJ, Ellis EC. 2018. The spatial and termporal domains of modern ecology. Nature Ecology & Evolution 2:819–26.CrossRefGoogle Scholar
  16. Gauthier S, Boucher D, Morissette J, De Grandpré L. 2010. Fifty-seven years of composition change in the eastern boreal forest of Canada. Journal of Vegetation Science 21:772–85.Google Scholar
  17. Grenfell R, Aakala T, Kuuluvainen T. 2011. Microsite occupancy and the spatial structure of understorey regeneration in three late-successional Norway spruce forests in Northern Europe. Silva Fennica 45:1093–110.CrossRefGoogle Scholar
  18. Habeeb RL, Trebilco J, Wotherspoon S, Johnson CR. 2005. Determining natural scales of ecological systems. Ecological Monographs 75:467–87.CrossRefGoogle Scholar
  19. Hamel B, Bélanger N, Paré D. 2004. Productivity of black spruce and Jack pine stands in Quebec as related to climate, site biological features and soil properties. Forest Ecology and Management 191:239–51.CrossRefGoogle Scholar
  20. Hay GJ, Dubé P, Bouchard A, Marceau DJ. 2002. A scale-space primer for exploring and quantifying complex landscapes. Ecological Modelling 153:27–49.CrossRefGoogle Scholar
  21. Hay GJ. 2014. Visualizing scale-domain manifolds: a multiscale geo-object-based approach. In: Weng JF, Weng Q, Eds. Scale issues in remote sensing. New York: Wiley. p 141–69.Google Scholar
  22. Hennigar CR, MacLean DA, Quiring DT, Kershaw JA Jr. 2008. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. Forest Science 54:158–66.Google Scholar
  23. Holmström L, Pasanen L, Furrer R, Sain SR. 2011. Scale space multiresolution analysis of random signals. Computational Statistics & Data Analysis 55:2840–55.CrossRefGoogle Scholar
  24. Jenness J, Brost B, Beier P. 2013. Land facet corridor designer: topographic position index tools. Accessed 10 October 2017.
  25. Kljun N, Black TA, Griffis TJ, Barr AG, Gaumont-Guay D, Morgenstern K, McCaughey JH, Nesic Z. 2006. Response of net ecosystem productivity of three boreal forest stands to drought. Ecosystems 9:1128–44.CrossRefGoogle Scholar
  26. Kotliar NB, Wiens JA. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–60.CrossRefGoogle Scholar
  27. Kuuluvainen T, Kalmari R. 2003. Regeneration microsites of Picea abies seedlings in a windthrow area of a boreal old-growth forest in southern Finland. Annales Botanici Fennici 40:401–13.Google Scholar
  28. Kuuluvainen T, Aakala T. 2011. Natural forest dynamics in boreal Fennoscandia: a review and a classification. Silva Fennica 45:823–41.CrossRefGoogle Scholar
  29. Kuuluvainen T, Syrjänen K, Kalliola R. 1998. Structure of a pristine Picea abies forest in Northeastern Europe. Journal of Vegetation Science 9:563–74.CrossRefGoogle Scholar
  30. Kuuluvainen T, Wallenius TH, Kauhanen H, Aakala T, Mikkola K, Demidova N, Ogibin B. 2014. Episodic, patchy disturbances characterize an old-growth Picea abies dominated forest landscape in northeastern Europe. Forest Ecology and Management 320:96–103.CrossRefGoogle Scholar
  31. Kuuluvainen T, Hofgaard A, Aakala T, Jonsson BG. 2017. North Fennoscandian mountain forests: history, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management 385:140–9.CrossRefGoogle Scholar
  32. Lavoie M, Harper K, Paré D, Bergeron Y. 2007. Spatial pattern in the organic layer and tree growth: a case study from regenerating Picea mariana stands prone to paludification. Journal of Vegetation Science 18:213–22.CrossRefGoogle Scholar
  33. Mansuy N, Gauthier S, Robitaille A, Bergeron Y. 2010. The effects of surficial deposit-drainage combinations on spatial variations of fire cycles in the boreal forest of eastern Canada. International Journal of Wildland Fire 19:1083–98.CrossRefGoogle Scholar
  34. Niemelä J, Haila Y, Punttila P. 1996. The importance of small-scale heterogeneity in boreal forests: variation in diversity in forest-floor invertebrates across the succession gradient. Ecography 19:352–68.CrossRefGoogle Scholar
  35. Niklasson M, Granström A. 2000. Numbers and sizes of long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–99.CrossRefGoogle Scholar
  36. O’Neill RV, DeAngelis DL, Waide JB, Allen THF. 1986. A hierarchical concept of ecosystems. Princeton: Princeton University Press.Google Scholar
  37. Pasanen L, Aakala T, Holmström L. 2018. A scale space approach for estimating the characteristic feature sizes in hierarchical signals. Stat (in press).Google Scholar
  38. Pasanen L, Launonen I, Holmström L. 2013. A scale space multiresolution method for extraction of time series features. Stat 2:273–91.CrossRefGoogle Scholar
  39. Pasanen L, Holmström L. 2017. Scale space multiresolution correlation analysis for time series data. Computational Statistics 32:197–218.CrossRefGoogle Scholar
  40. Pham AT, De Grandpré L, Gauthier S, Bergeron Y. 2004. Gap dynamics and replacement patterns in gaps of the northeastern boreal forest of Quebec. Canadian Journal of Forest Research 34:353–64.CrossRefGoogle Scholar
  41. Robitaille A, Saucier J-P. 1998. Paysages régionaux du Québec méridional. Sainte-Foy, CA: Les Publications du Québec. (in French)Google Scholar
  42. Roiko-Jokela P. 1980. Maaston korkeus puuntuotantoon vaikuttavana tekijänä Pohjois-Suomessa. Folia Forestalia 452:1–30 (in Finnish with English summary).Google Scholar
  43. Rowe JS. 1972. Forest regions of Canada. Ottawa: Environment Canada.Google Scholar
  44. Ruel J-C, Pin D, Cooper K. 1998. Effect of topography on wind behaviour in a complex terrain. Forestry 71:261–5.CrossRefGoogle Scholar
  45. Runkle JR, Yetter TC. 1987. Treefalls revisited: gap dynamics in the Southern Appalachians. Ecology 68:417–24.CrossRefGoogle Scholar
  46. Scholes RJ. 2017. Taking the mumbo out of the jumbo: progress towards a robust basis for ecological scaling. Ecosystems 20:4–13.CrossRefGoogle Scholar
  47. Seibert J, Stendahl J, Sørensen R. 2007. Topographical influences on soil properties in boreal forests. Geoderma 141:139–48.CrossRefGoogle Scholar
  48. Simard M, Lecomte N, Bergeron Y, Bernier PY, Paré D. 2007. Forest productivity decline caused by successional paludification of boreal soils. Ecological Applications 17:1619–37.CrossRefPubMedGoogle Scholar
  49. Sutinen R, Teirilä A, Pänttäjä M, Sutinen M-L. 2002. Distribution and diversity of tree species with respect to soil electrical characteristics in Finnish Lapland. Canadian Journal of Forest Research 32:1158–70.CrossRefGoogle Scholar
  50. Walker X, Johnstone JF. 2014. Widespread negative correlations between black spruce growth and temperature across topographic moisture gradients in the boreal forest. Environmental Research Letters . Scholar
  51. Wallenius TH, Kuuluvainen T, Vanha-Majamaa I. 2004. Fire history in relation to site type and vegetation in Vienansalo wilderness in eastern Fennoscandia, Russia. Canadian Journal of Forest Research 34:1400–9.CrossRefGoogle Scholar
  52. Wand MP, Jones MC. 1994. Kernel smoothing. London: Chapman and Hall.CrossRefGoogle Scholar
  53. Wickland KP, Neff JC. 2008. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry 87:29–47.CrossRefGoogle Scholar
  54. Wong CM, Daniels LD. 2016. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Global Change Biology 23:1926–41.CrossRefPubMedGoogle Scholar
  55. Wu J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of Remote Sensing 25:367–80.CrossRefGoogle Scholar
  56. Wu J, Loucks OL. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly Review of Biology 70:439–66.CrossRefGoogle Scholar
  57. Zhang N, Li H. 2013. Sensitivity and effectiveness and of landscape metric scalograms in determining the characteristic scale of a hierarchically structured landscape. Landscape Ecology 28:343–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Research Unit of Mathematical SciencesUniversity of OuluOuluFinland
  3. 3.Canadian Forest ServiceLaurentian Forestry CentreSainte-FoyCanada

Personalised recommendations