Skip to main content

Advertisement

Log in

The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in Headwater Catchments

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Large, high-severity wildfires alter the physical and biological conditions that determine how catchments retain and release nutrients and regulate streamwater quality. The short-term water quality impacts of severe wildfire are often dramatic, but the longer-term responses may better reflect terrestrial and aquatic ecosystem recovery. We followed streamwater chemistry for 14 years after the largest fire in recorded Colorado history, the 2002 Hayman Fire, to characterize patterns in nitrogen (N) and carbon (C) export. Throughout the post-fire period, stream nitrate and total dissolved N (TDN) remained elevated in 10 burned catchments relative to pre-burn periods and 4 unburned control catchments. Both the extent of fire in a catchment and wildfire severity influenced stream N concentrations. Nitrate was more than an order of magnitude higher in streams draining catchments that burned to a high extent (> 60% of their areas) compared to unburned catchments. Unburned catchments retained more than 95% of atmospheric N inputs, but N retention in burned catchments was less than half of N inputs. Unlike N, stream C was elevated in catchments that burned to a lesser extent (30–60% of their areas burned), compared to either unburned or extensively burned catchments. Remotely sensed estimates of upland and riparian vegetation cover suggest that burned forests could require several more decades before forest cover and nutrient demand return to pre-fire levels. The persistent stream N increases we report are below drinking water thresholds, but exceed ecoregional reference concentrations for healthy stream ecosystems and indicate that extensively burned headwater catchments no longer function as strong sinks for atmospheric N. Combined with increasing trends in wildfire severity and elevated N deposition, our findings demonstrate the potential for substantial post-wildfire changes in ecosystem N retention and have implications for nutrient export to downstream waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abatzoglou JT, Williams AP. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci 113:11770–5.

    Article  CAS  PubMed  Google Scholar 

  • Abella SR, Fornwalt PJ. 2015. Ten years of vegetation assembly after a North American mega fire. Glob Change Biol 21:789–802.

    Article  Google Scholar 

  • Addington RN, Aplet GH, Battaglia MA, Briggs JS, Brown PM, Cheng AS, Dickinson Y, Feinstein JA, Pelz KA, Regan CM, Thinnes J, Truex R, Fornwalt PJ, Gannon B, Julian CW, Underhill JL, Wolk B. 2018. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range RMRS-GTR-373. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.: Fort Collins, CO, p 121.

  • Agee JK. 1998. The landscape ecology of western forest fire regimes. Northwest Sci 72:24–34.

    Google Scholar 

  • APHA. 1998a. Single-column—Method 4110C. Pages 4-6 to 4-8. Standard methods for the examination of water and waste water, 20th edn. Washington, DC: American Public Health Association.

  • APHA. 1998b. Total suspended solids dried at 103–105 degrees Celsius—Method 2540D. Pages 2-57 to 52-58. Standard methods for the examination of water and waste water, 20th edn. Washington, DC: American Public Health Association.

  • APHA. 1998c. Nephelometric Method—2130b. Pages 2-9 to 2-11. Standard methods for the examination of water and waste water, 20th edn. Washington, DC: American Public Health Association.

  • Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL. 2017. Human-started wildfires expand the fire niche across the United States. Proc Natl Acad Sci 114:2946–51.

    Article  CAS  PubMed  Google Scholar 

  • Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Minear JT, Moraska B. 2000. Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems 3:352–68.

    Article  CAS  Google Scholar 

  • Beck KK, Fletcher MS, Gadd PS, Heijnis H, Saunders KM, Simpson GL, Zawadzki A. 2018. Variance and rate-of-change as early warning signals for a critical transition in an aquatic ecosystem state: a test case from Tasmania, Australia. J Geophys Res Biogeosci 123:495–508.

    Article  Google Scholar 

  • Benavides-Solorio JD, MacDonald LH. 2005. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. Int J Wildland Fire 14:457–74.

    Article  Google Scholar 

  • Betts EF, Jones JB. 2009. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska. Arct Antarct Alp Res 41:407–17.

    Article  Google Scholar 

  • Bladon KD, Emelko MB, Silins U, Stone M. 2014. Wildfire and the future of water supply. Environ Sci Technol 48:8936–43.

    Article  CAS  PubMed  Google Scholar 

  • Bormann BT, Homann PS, Darbyshire RL, Morrissette BA. 2008. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can J For Res 38:2771–83.

    Article  CAS  Google Scholar 

  • Bowman WD, Murgel J, Blett T, Porter E. 2012. Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. J Environ Manag 103:165–71.

    Article  CAS  Google Scholar 

  • Boyden S, Binkley D. 2016. The effects of soil fertility and scale on competition in ponderosa pine. Eur J For Res 135:153–60.

    Article  Google Scholar 

  • Brown PM, Battaglia MA, Fornwalt PJ, Gannon B, Huckaby LS, Julian C, Cheng AS. 2015. Historical (1860) forest structure in ponderosa pine forests of the northern Front Range, Colorado. Can J For Res 45:1462–73.

    Article  Google Scholar 

  • Brown TC, Froemke P. 2012. Nationwide assessment of nonpoint source threats to water quality. Bioscience 62:136–46.

    Article  Google Scholar 

  • Bryant B, McGrew LW, Wobus RA. 1981. Geologic map of the Denver 1° × 2° Quadrangle, North-Central Colorado. US Geological Survey, I-1163. Reston, VA.

  • Cawley KM, Hohner AK, Podgorski DC, Cooper WT, Korak JA, Rosario-Ortiz FL. 2017. Molecular and spectroscopic characterization of water extractable organic matter from Thermally altered soils reveal insight into disinfection byproduct precursors. Environ Sci Technol 51:771–9.

    Article  CAS  PubMed  Google Scholar 

  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143:1–10.

    Article  Google Scholar 

  • Chambers ME, Fornwalt PJ, Malone SL, Battaglia MA. 2016. Patterns of conifer regeneration following high severity wildfire in ponderosa pine—dominated forests of the Colorado Front Range. For Ecol Manag 378:57–67.

    Article  Google Scholar 

  • Chorover J, Vitousek PM, Everson DA, Esperanze AM, Turner D. 1994. Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26:115–44.

    Article  CAS  Google Scholar 

  • Chow AT, Lee ST, O’Geen AT, Orozco T, Beaudette D, Wong PK, Hernes PJ, Tate W, Dahlgren RA. 2009. Litter contributions to dissolved organic matter and disinfection byproduct precursors in California oak woodland watersheds. J Environ Qual 38:2334–43.

    Article  CAS  PubMed  Google Scholar 

  • Cipra J, Kelly E, MacDonald L, Norman III J. 2003. Soil properties, erosion, and implications for rehabilitation and aquatic ecosystems. Pages 204-219 in Graham R, ed. Hayman Fire Case Study, General Technical Report RMRS-GTR-114. Ogden, UT: USDA Forest Service, Rocky Mountain Research Station

  • Colorado. 2002. Colorado’s 2002 303(d) and Monitoring and Evaluation List. Colorado Department of Public Health and Environment, Water Quality Control Commission. Denver, CO.

  • Colorado. 2016a. Colorado’s section 303(D) list of impaired waters and monitoring and evaluation list. Colorado Department of Public Health and Environment, Water Quality Control Commission. Denver, CO. https://www.colorado.gov/pacific/sites/default/files/93_2016%2811%29.pdf.

  • Colorado. 2016b. Regulation 31—interim nitrogen values for cold rivers and streams (effective 31 May, 2017). Colorado Department of Public Health and Environment. Water Quality Control Commission. Denver, CO.

  • Colorado Parks and Wildlife. 2017. South Platte river at deckers. fish survey and management information, Technical Report. On-line: https://cpw.state.co.us/thingstodo/Fishery%20Survey%20Summaries/SouthPlatteRiverAtDeckers.pdf.

  • Costa MR, Calvão AR, Aranha J. 2014. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Appl Geochem 44:93–102.

    Article  CAS  Google Scholar 

  • Covino T, McGlynn B, Baker MCG. 2010. Separating physical and biological nutrient retention and quantifying uptake kinetics from ambient to saturation in successive mountain stream reaches. J Geophys Res Biogeosci 115:59–68.

    Article  CAS  Google Scholar 

  • DeLuca T, Nilsson MC, Zackrisson O. 2002. Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–14.

    Article  CAS  PubMed  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–53.

    Article  CAS  Google Scholar 

  • Dennison PE, Brewer SC, Arnold JD, Moritz MA. 2014. Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett. https://doi.org/10.1002/2014GL059576.

    Article  Google Scholar 

  • Dunnette PV, Higuera PE, McLauchlan KK, Derr KM, Briles CE, Keefe MH. 2014. Biogeochemical impacts of wildfires over four millennia in a Rocky Mountain subalpine watershed. New Phytol 203:900–12.

    Article  CAS  PubMed  Google Scholar 

  • Emelko MB, Silins U, Bladon KD, Stone M. 2011. Implications of land disturbance on drinking water treatability in a changing climate: demonstrating the need for “source water supply and protection” strategies. Water Res 45:461–72.

    Article  CAS  PubMed  Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P. 2003. Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404–20.

    Article  Google Scholar 

  • Fork M, Heffernan J. 2014. Direct and indirect effects of dissolved organic matter source and concentration on denitrification in northern Florida Rivers. Ecosystems 17:14–28.

    Article  CAS  Google Scholar 

  • Fornwalt PJ, Kaufmann MR. 2014. Understorey plant community dynamics following a large, mixed severity wildfire in a Pinus ponderosaPseudotsuga menziesii forest, Colorado, USA. J Veg Sci 25:805–18.

    Article  Google Scholar 

  • Fornwalt P, Stevens-Rumann C, Collins B. 2018. Overstory structure and surface cover dynamics in the decade following the Hayman Fire, Colorado. Forests 9:152. https://doi.org/10.3390/f9030152.

    Article  Google Scholar 

  • FSA. 2015. Farm Service Agency. National Agriculture Imagery Program (NAIP). USDA–FSA, Washington, DC. Available online: http://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/index.

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ. 2003. The nitrogen cascade. Bioscience 53:341–56.

    Article  Google Scholar 

  • Gooday AJ, Jorissen JF, Levin LA, Middelburg JJ, Naqvi SWA, Rabalais NN, Scranton M, Zhang J. 2009. Historical records of coastal eutrophication-induced hypoxia. Biogeosciences 6:1707–45.

    Article  CAS  Google Scholar 

  • Graham RT, ed. 2003. Hayman Fire Case Study: Gen. Tech. Rep. RMRS-GTR-114 USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, p 396.

  • Gundale MJ, DeLuca TH, Fiedler CE, Ramsey PW, Harrington MG, Gannon JE. 2005. Restoration treatments in a Montana ponderosa pine forest: effects on soil physical, chemical and biological properties. For Ecol Manag 213:25–38.

    Article  Google Scholar 

  • Hallema DW, Sun G, Bladon KD, Norman SP, Caldwell PV, Liu Y, McNulty SG. 2017. Regional patterns of post-wildfire streamflow response in the western United States: the importance of scale-specific connectivity. Hydrol Process 31:2582–98.

    Article  Google Scholar 

  • Hanan EJ, Schimel JP, Dowdy K, D’Antonio CM. 2016. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biol Biochem 95:87–99.

    Article  CAS  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Change Biol 6:174–84.

    Article  Google Scholar 

  • Harvey BJ. 2016. Human-caused climate change is now a key driver of forest fire activity in the western United States. Proc Natl Acad Sci USA 113:11649–50.

    Article  CAS  PubMed  Google Scholar 

  • Harvey BJ, Donato DC, Turner MG. 2016. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Glob Ecol Biogeogr . https://doi.org/10.1111/geb.12443.

    Article  Google Scholar 

  • Helsel DR, Hirsch RM. 1992. Statistical methods in water resources, Vol. 49New York: Elsevier. p 546.

    Book  Google Scholar 

  • Homann PS, Bormann BT, Darbyshire RL, Morrissette BA. 2011. Forest soil carbon and nitrogen losses associated with wildfire and prescribed fire. Soil Sci Soc Am J 75:1926–34.

    Article  CAS  Google Scholar 

  • Hutson SS, Barber NL, Kenny JF, Linsey KS, Lumia DS, Maupin MA. 2004. Estimated use of water in the United States in 2000. US Geological Survey Circular 1268 (Reston, VA).

  • Jiménez-Esquilín AE, Stromberger ME, Shepperd WD. 2008. Soil scarification and wildfire interactions and effects on microbial communities and carbon. Soil Sci Soc Am J 72:111–18.

    Article  CAS  Google Scholar 

  • Kaufmann MR, Regan CM, Brown PM. 2000. Heterogeneity in ponderosa pine/Douglas fir forests: age and size structure in unlogged and logged landscapes of central Colorado. Can J For Res 30:698–711.

    Article  Google Scholar 

  • Keeley JE. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–26.

    Article  Google Scholar 

  • Larsen IJ, MacDonald LH, Brown E, Rough D, Welsh MJ, Pietraszek JH, Libohova Z, de Dios Benavides-Solorio J, Schaffrath K. 2009. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci Soc Am J 73:1393–407.

    Article  CAS  Google Scholar 

  • Larson AJ, Churchill D. 2012. Tree spatial patterns in fire-frequent forests of western North America, including mechanisms of pattern formation and implications for designing fuel reduction and restoration treatments. For Ecol Manag 267:74–92.

    Article  Google Scholar 

  • Malone S, Fornwalt P, Battaglia M, Chambers M, Iniguez J, Sieg C. 2018. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest. Forests 9:45. https://doi.org/10.3390/f9010045.

    Article  Google Scholar 

  • Martin DA. 2016. At the nexus of fire, water and society. Philos Trans R Soc B Biol Sci . https://doi.org/10.1098/rstb.2015.0172.

    Article  Google Scholar 

  • Millar CI, Stephenson NL. 2015. Temperate forest health in an era of emerging megadisturbance. Science 349:823–6.

    Article  CAS  PubMed  Google Scholar 

  • Miller JD, Safford HD, Crimmins M, Thode AE. 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA. Ecosystems 12:16–32.

    Article  Google Scholar 

  • Minshall GW, Brock JT, Varley JD. 1989. Wildfires and Yellowstone’s stream ecosystems. Bioscience 39:707–15.

    Article  Google Scholar 

  • Murphy JD, Johnson DW, Miller WW, Walker RF, Carroll EF, Blank RR. 2006. Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. J Environ Qual 35:479–89.

    Article  CAS  PubMed  Google Scholar 

  • NADP. 2017. National Atmospheric Deposition Program, Program Office, Illinois State Water Survey, University of Illinois, Champaign, IL 61820.

  • Pannkuk CD, Robichaud PR. 2003. Effectiveness of needle case at reducing erosion after forest fires. Water Resour Res 39:1333–42. https://doi.org/10.1029/2003WR002318.

    Article  Google Scholar 

  • Ranalli AJ. 2004. A summary of the scientific literature on the effects of fire on the concentration of nutrients in surface waters. USGS Open-File Report 2004-1296: 28.

  • Raymond PA, Saiers JE, Sobczak WV. 2016. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97:5–16.

    Article  PubMed  Google Scholar 

  • Rhoades CC, Entwistle D, Butler D. 2011. The influence of wildfire extent and severity on streamwater chemistry, sediment and temperature following the Hayman Fire, Colorado. Int J Wildfire 20:430–42.

    CAS  Google Scholar 

  • Rhoades CC, Fornwalt PJ, Paschke MW, Shanklin A, Jonas JL. 2015. Recovery of small pile burn scars in conifer forests of the Colorado Front Range. For Ecol Manag 347:180–7.

    Article  Google Scholar 

  • Riggan PJ, Lockwood RN, Jacks PM, Colver CG, Weirich F, DeBano LF, Brass JA. 1994. Effects of fire severity on nitrate mobilization in watersheds subject to chronic atmospheric deposition. Environ Sci Technol 28:369–75.

    Article  CAS  PubMed  Google Scholar 

  • Robichaud PR, MacDonald LH, Freehouf J, Neary DG, Martin D, Ashmun L. 2003. Postfire rehabilitation of the Hayman Fire. Pages 293–313 in Graham RT, ed. Hayman Fire Case Study. Ogden, UT: Gen. Tech. Rep. RMRS-GTR-114 USDA Forest Service, Rocky Mountain Research Station.

  • Romme WH, Boyce MS, Gresswell R, Merrill EH, Minshall GW, Whitlock C, Turner MG. 2011. Twenty years after the 1988 Yellowstone Fires: lessons about disturbance and ecosystems. Ecosystems 14:1196–215.

    Article  Google Scholar 

  • Rust AJ, Hogue TS, Saxe S, McCray J. 2018. Post-fire water-quality response in the western United States. Int J Wildland Fire 27:203–16.

    Article  Google Scholar 

  • Savage M, Mast JN, Feddema JJ. 2013. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Can J For Res 43:570–83.

    Article  Google Scholar 

  • Schlesinger WH, Bernhardt ES. 2013. Biogeochemistry: an analysis of global change. Oxford: Academic Press. p 673.

    Google Scholar 

  • Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N, Morgan P, Moritz MA, Rasker R, Turner MG, Whitlock C. 2017. Adapt to more wildfire in western North American forests as climate changes. Proc Natl Acad Sci 114:4582–90.

    Article  CAS  PubMed  Google Scholar 

  • Sherriff RL, Veblen TT, Franklin J. 2006. Ecological effects of changes in fire regimes in Pinus ponderosa ecosystems in the Colorado Front Range. J Veg Sci 17:705–18.

    Article  Google Scholar 

  • Silins U, Bladon KD, Kelly EN, Esch E, Spence JR, Stone M, Emelko MB, Boon S, Wagner MJ, Williams CHS, Tichkowsky I. 2014. Five-year legacy of wildfire and salvage logging impacts on nutrient runoff and aquatic plant, invertebrate, and fish productivity. Ecohydrology 7:1508–23.

    Article  Google Scholar 

  • Slavik KB, Peterson BJ, Deegan LA, Bowden WB, Hershey AE, Hobbie JE. 2004. Long-term responses of the Kuparuk River ecosystem to phosphorus fertilization. Ecology 85:939–54.

    Article  Google Scholar 

  • Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S. 2011. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J Hydrol 396:170–92.

    Article  CAS  Google Scholar 

  • Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, Donato DC, Morgan P, Veblen TT. 2017. Evidence for declining forest resilience to wildfires under climate change. Ecol Lett . https://doi.org/10.1111/ele.12889.

    Article  PubMed  Google Scholar 

  • Triska FJ, Kennedy VC, Avanzino RJ, Zellweger GW, Bencala KE. 1989a. Retention and transport of nutrients in a 3rd-order stream—channel processes. Ecology 70:1877–92.

    Article  Google Scholar 

  • Triska FJ, Kennedy VC, Avanzino RJ, Zellweger GW, Bencala KE. 1989b. Retention and transport of nutrients in a third-order stream in Northwestern California: hyporheic processes. Ecology 70:1893–905.

    Article  Google Scholar 

  • Turner MG. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91:2833–49.

    Article  Google Scholar 

  • Turner MG, Smithwick EAH, Metzger KL, Tinker DB, Romme WH. 2007. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc Natl Acad Sci 104:4782–9.

    Article  CAS  PubMed  Google Scholar 

  • Underhill JL, Dickinson Y, Rudney A, Thinnes J. 2014. Silviculture of the Colorado Front Range landscape restoration initiative. J For 112:484–93.

    Google Scholar 

  • USEPA. 2000. Nutrient criteria technical guidance manual. Rivers and streams. EPA-822-B-00-002. Office of Water, US Environmental Protection Agency, Washington, DC.

  • USEPA. 2003. National Drinking Water Standards. EPA 816-F-03-016.

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM. 1997. Human domination of Earth’s ecosystems. Science 277:494–9.

    Article  CAS  Google Scholar 

  • Wagner MJ, Bladon KD, Silins U, Williams CHS, Martens AM, Boon S, MacDonald RJ, Stone M, Emelko MB, Anderson A. 2014. Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls. J Hydrol 517:328–38.

    Article  Google Scholar 

  • Wan S, Hui D, Luo Y. 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11:1349–65.

    Article  Google Scholar 

  • Wang JJ, Dahlgren RA, Erşan MS, Karanfil T, Chow AT. 2015. Wildfire altering terrestrial precursors of disinfection byproducts in forest detritus. Environ Sci Technol 49:5921–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang X. 2017. Impacts of wildfires on interannual trends in land surface phenology: an investigation of the Hayman Fire. Environ Res Lett 12:54008.

    Article  Google Scholar 

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. 2006. Warming and earlier spring increase Western U.S. forest wildfire activity. Science 313:940–3.

    Article  CAS  PubMed  Google Scholar 

  • Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. 2011. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc Natl Acad Sci 108:13165–70.

    Article  PubMed  Google Scholar 

  • Writer JH, Hohner A, Oropeza J, Schmidt A, Cawley K, Rosario-Ortiz FL. 2014. Water treatment implications after the High Park Wildfire in Colorado. J Am Water Works Assoc 106:85–6.

    Article  CAS  Google Scholar 

  • WRDC. 2017. Western Regional Climate Center. Monthly Total Precipitation Cheesman, Colorado (Station 051528). http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?co1528.

  • Zarnetske JP, Haggerty R, Wondzell SM, Baker MA. 2011. Labile dissolved organic carbon supply limits hyporheic denitrification. J Geophys Res Biogeosci 116:G04036.

    Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Joint Fire Sciences Program (JFSP# 14-1-06-11) and the US Forest Service; National Fire Plan (2016-2019). Sincere thanks to Steve Alton and Paula Fornwalt of the Manitou Experimental NF, Dana Butler, Deb Entwistle, and Leah Lessard of the Pike National Forest. We acknowledge helpful comments by Susan Miller, Marin Chambers, Dan Binkley, and two anonymous reviewers on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Rhoades.

Additional information

This paper was written and prepared by US Government employees on official time, and therefore it is in the public domain and not subject to copyright in the US.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhoades, C.C., Chow, A.T., Covino, T.P. et al. The Legacy of a Severe Wildfire on Stream Nitrogen and Carbon in Headwater Catchments. Ecosystems 22, 643–657 (2019). https://doi.org/10.1007/s10021-018-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0293-6

Keywords

Navigation