, Volume 22, Issue 3, pp 629–642 | Cite as

A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning

  • Verónica FerreiraEmail author
  • Luz Boyero
  • Clementina Calvo
  • Francisco Correa
  • Ricardo Figueroa
  • José Francisco GonçalvesJr.
  • Guillermo Goyenola
  • Manuel A. S. Graça
  • Luiz U. Hepp
  • Samuel Kariuki
  • Anahí López-Rodríguez
  • Néstor Mazzeo
  • Charles M’Erimba
  • Silvia Monroy
  • Alessandra Peil
  • Jesús Pozo
  • Renan Rezende
  • Franco Teixeira-de-Mello


Forest change is a major environmental problem worldwide. Forest streams, with their large aquatic–terrestrial interface and strong dependence on terrestrially derived organic matter, are highly sensitive to forest changes. Fast-wood plantations can be particularly threatening if they markedly differ from native forests. Eucalyptus plantations, in particular, cover large areas worldwide (> 20 million ha, mostly from 35°S to 35°N), but their effects on stream functioning have been addressed mostly in the Iberian Peninsula, which limits generalization to other regions. We assessed the effect of eucalyptus plantations on total (microbial decomposers and macroinvertebrates; in coarse mesh bags) and microbial-driven (in fine mesh bags) leaf litter decomposition by comparing streams flowing through native forests and eucalyptus plantations in seven regions in the Iberian Peninsula, Central Africa and South America. We found an overall significant inhibition of total litter decomposition by 23%. The effect did not significantly differ across regions, although a significant inhibition was found for Spain (− 41%), South Brazil (− 31%) and Uruguay (− 36%) (Portugal had a marginally nonsignificant inhibition by 50%) but not for other regions, suggesting that the effects of plantations in temperate climates are mediated through effects on macroinvertebrate communities. Contrarily, the overall effect for microbial-driven litter decomposition was non-significant, but it significantly differed across regions with a significant stimulation in Central Brazil (110%) and Uruguay (32%), and nonsignificant effects for other regions (Kenya had a marginally nonsignificant inhibition by 48%), suggesting that functional redundancy among microbial communities is not general and effects can occur if plantations induce changes in nutrient availability, solar irradiation or litter characteristics.


effect size forest change leaf litter decomposition mesh bags meta-analysis response ratio stream functioning 



This study was financed by the Portuguese Foundation for Science and Technology (FCT), through the strategic Project UID/MAR/04292/2013 granted to MARE and through financial support given to VF (SFRH/BPD/76482/2011; IF/00129/2014). FTM was supported by the Sistema Nacional de Investigación-Agencia Nacional de Investigación e Innovación (SNI-ANII) and Programa de Desarrollo de las Ciencias Básicas (PEDECIBA)-Geociencias. LUH received financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil; Edital CNPq/Universal #421632/2016-0 and Grant #305203/2017-7). Additional financial support was provided by the Basque Government (Grant No. IT-302-10), the Water Research Centre for Agriculture and Mining (CHRIAM 1513001) and Initiation Project 11170390 from National Commission for Scientific and Technological Research of the Chilean Government, the Fundação de Apoio à Pesquisa do Distrito Federal (FAP-DF/Brazil; Edital 03/2015—No. 193.000.870/2015), and the CNPq/Brazil (Public call MCTI/CNPq No. 14/2013—Universal Proc.: 471767/2013-1; CT-Hidro/Climatic Changes/Water Resources/CNPq Proc. 403949/2013-0; Fellowship PQ No. 302957/2014-6). Comments by two anonymous reviewers and the subject-matter editor are also acknowledged.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10021_2018_292_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)


  1. Abelho M, Graça MAS. 1996. Effects of eucalyptus afforestation on leaf litter dynamics and macroinvertebrate community structure of streams in Central Portugal. Hydrobiologia 324:195–204.CrossRefGoogle Scholar
  2. Azevedo-Pereira HVS, Graça MAS, González JM. 2006. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia 559:183–92.CrossRefGoogle Scholar
  3. Bäckstrand K, Lövbrand E. 2006. Planting trees to mitigate climate change: contested discourses of ecological modernization, green governmentality and civic environmentalism. Glob Environ Polit 6:50–75.CrossRefGoogle Scholar
  4. Bärlocher F, Graça MAS. 2002. Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47:1123–35.CrossRefGoogle Scholar
  5. Bonada N, Prat N, Resh VH, Statzner B. 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495–523.CrossRefPubMedGoogle Scholar
  6. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2009. Introduction to meta-analysis. Chichester: Wiley. p 421.CrossRefGoogle Scholar
  7. Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albarino RJ, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramirez A, Chara J, Moretti MS, Goncalves JF Jr, Helson JE, Chará-Serna AM, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AOY, Buria LM, Villanueva VD, Zuniga MC, Pringle CM. 2011a. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–48.CrossRefPubMedGoogle Scholar
  8. Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Gonçalves JF Jr, Moretti MS, Jingut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC. 2011b. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–94.CrossRefPubMedGoogle Scholar
  9. Boyero L, Pearson RG, Gessner MO, Dudgeon D, Ramírez A, Yule CM, Callisto M, Pringle CM, Encalada AC, Arunachalam M, Mathooko J, Helson JE, Rincón J, Brider A, Cornejo A, Flecker AS, Mathuriau C, M’Erimba C, Gonçalves JF Jr, Moretti M, Jinggut T. 2015. Leaf-litter breakdown in tropical streams: is variability the norm? Freshw Sci 34:759–69.CrossRefGoogle Scholar
  10. Calder IR. 2002. Eucalyptus, water and the environment. In: Coppen JJW, Ed. Eucalyptus. The genus Eucalyptus. London: Taylor and Francis. p 36–51.Google Scholar
  11. Camacho R, Boyero L, Cornejo A, Ibáñez A, Pearson RG. 2009. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41:625–32.CrossRefGoogle Scholar
  12. Canhoto C, Graça MAS. 1995. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshw Biol 34:209–14.CrossRefGoogle Scholar
  13. Canhoto C, Graça MAS. 1996. Decomposition of Eucalyptus globulus leaves and three native leaf species (Alnus glutinosa, Castanea sativa and Quercus faginea) in a Portuguese low order stream. Hydrobiologia 333:79–85.CrossRefGoogle Scholar
  14. Canhoto C, Graça MAS. 1999. Leaf barriers to fungal colonization and shredders (Tipula lateralis) consumption of decomposing Eucalyptus globulus. Microb Ecol 37:163–72.CrossRefPubMedGoogle Scholar
  15. Canhoto C, Laranjeira C. 2007. Leachates of Eucalyptus globulus in intermittent streams affect water parameters and invertebrates. Int Rev Hydrobiol 92:173–82.CrossRefGoogle Scholar
  16. Canhoto C, Calapez R, Gonçalves AL, Moreira-Santos M. 2013. Effects of Eucalyptus leachates and oxygen on leaf-litter processing by fungi and stream invertebrates. Freshw Sci 32:411–24.CrossRefGoogle Scholar
  17. Casotti CG, Kiffer WP Jr, Moretti MS. 2014. Leaf traits induce the feeding preference of a shredder of the genus Triplectides Kolenati, 1859 (Trichoptera) in an Atlantic Forest stream, Brazil: a test with native and exotic leaves. Aquat Insects 36:43–52.CrossRefGoogle Scholar
  18. Chauvet E, Fabre E, Elosegui A, Pozo J. 1997. The impact of eucalypt on the leaf-associated aquatic hyphomycetes in Spanish streams. Can J Bot 75:880–7.CrossRefGoogle Scholar
  19. Cordero-Rivera A, Álvarez AM, Álvarez M. 2017. Eucalypt plantations reduce the diversity of macroinvertebrates in small forested streams. Anim Biodivers Conserv 40:87–97.CrossRefGoogle Scholar
  20. Cornut J, Elger A, Lambrigot D, Marmonier P, Chauvet E. 2010. Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshw Biol 55:2541–56.CrossRefGoogle Scholar
  21. Correa-Araneda F, Boyero L, Figueroa R, Sánchez C, Abdala R, Ruiz-García A, Graça MAS. 2015. Joint effects of climate warming and exotic litter (Eucalyptus globulus Labill.) on stream detritivore fitness and litter breakdown. Aquat Sci 77:197–205.CrossRefGoogle Scholar
  22. Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A. 2013. Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–13.CrossRefPubMedGoogle Scholar
  23. Datry T, Corti R, Claret C, Philippe M. 2011. Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the “drying memory”. Aquat Sci 73:471–83.CrossRefGoogle Scholar
  24. Dobson M, Magana A, Mathooko JM, Ndegwa FK. 2002. Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshw Biol 47:909–19.CrossRefGoogle Scholar
  25. Dobson M, Mathooko JM, Ndegwa FK, M’Erimba C. 2004. Leaf litter processing rates in a Kenyan highland stream, the Njoro River. Hydrobiologia 519:207–10.CrossRefGoogle Scholar
  26. Fernández C, Vega JA, Gras JM, Fonturbel T. 2006. Changes in water yield after a sequence of perturbations and forest management practices in an Eucalyptus globulus Labill. watershed in Northern Spain. For Ecol Manag 234:275–81.CrossRefGoogle Scholar
  27. Ferreira V, Elosegi A, Gulis V, Pozo J, Graça MAS. 2006. Eucalyptus plantations affect fungal communities associated with leaf litter decomposition in Iberian streams. Archiv für Hydrobiologie 166:467–90.CrossRefGoogle Scholar
  28. Ferreira V, Encalada AC, Graça MAS. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshw Sci 31:945–62.CrossRefGoogle Scholar
  29. Ferreira V, Koricheva J, Pozo J, Graça MAS. 2016. A meta-analysis on the effects of changes in the composition of native forests on litter decomposition in streams. For Ecol Manag 364:27–38.CrossRefGoogle Scholar
  30. Ferreira V, Larrañaga A, Gulis V, Basaguren A, Elosegi A, Graça MAS, Pozo J. 2015. The effects of eucalypt plantations on plant litter decomposition and macroinvertebrate communities in Iberian streams. For Ecol Manag 335:129–38.CrossRefGoogle Scholar
  31. Gama M, Guilhermino L, Canhoto C. 2014. Comparison of three shredders response to acute stress induced by eucalyptus leaf leachates and copper: single and combined exposure at two distinct temperatures. Ann de Limnol Int J Limnol 50:97–107.CrossRefGoogle Scholar
  32. Gerber J-F. 2011. Conflicts over industrial tree plantations in the South: who, how and why? Glob Environ Change 21:165–76.CrossRefGoogle Scholar
  33. Gessner MO, Chauvet E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12:498–510.CrossRefGoogle Scholar
  34. Gomes PP, Ferreira V, Tonin AM, Medeiros AO, Júnior JF Jr. 2018. Combined effects of dissolved nutrients and oxygen on plant litter decomposition and associated fungal communities. Microb Ecol 75:854–62.CrossRefPubMedGoogle Scholar
  35. Gonçalves JF Jr, Graça MAS, Callisto M. 2006. Leaf-litter breakdown in 3 streams in temperate, Mediterranean, and tropical Cerrado climates. J N Am Benthol Soc 25:344–55.CrossRefGoogle Scholar
  36. Gonçalves JF Jr, Graça MAS, Callisto M. 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshw Biol 52:1440–51.CrossRefGoogle Scholar
  37. Gonçalves JF Jr, Rezende RS, França J, Callisto M. 2012a. Invertebrate colonisation during leaf processing of native, exotic and artificial detritus in a tropical stream. Mar Freshw Res 63:428–39.CrossRefGoogle Scholar
  38. Gonçalves JF Jr, Rezende RS, Martins NM, Gregório RS. 2012b. Leaf breakdown in an Atlantic Rain Forest stream. Aust Ecol 37:807–15.CrossRefGoogle Scholar
  39. Graça MAS, Cressa C. 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Int Rev Hydrobiol 95:27–41.CrossRefGoogle Scholar
  40. Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C. 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw Biol 46:947–57.CrossRefGoogle Scholar
  41. Graça MAS, Poquet JM. 2014. Do climate and soil influence phenotypic variability in leaf litter, microbial decomposition and shredder consumption? Oecologia 174:1021–32.CrossRefPubMedGoogle Scholar
  42. Graça MAS, Pozo J, Canhoto C, Elosegi A. 2002. Effects of Eucalyptus plantations on detritus, decomposers, and detritivores in streams. Sci World J 2:1173–85.CrossRefGoogle Scholar
  43. Gulis V, Ferreira V, Graça MAS. 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol 51:1655–69.CrossRefGoogle Scholar
  44. Gulis V, Suberkropp K. 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–34.CrossRefGoogle Scholar
  45. Gurevich J. 2013. Meta-analysis of results from multisite studies. In: Koricheva J, Gurevich J, Mengersen K, Eds. Handbook of meta-analysis in ecology and evolution. Princeton: Princeton University Press. p 313–20.CrossRefGoogle Scholar
  46. Hedges LV, Gurevitch J, Curtis PS. 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–6.CrossRefGoogle Scholar
  47. Hepp LU, Delanora R, Trevisan A. 2009. Compostos secundários durante a decomposição foliar de espécies arbóreas em um riacho do sul do Brasil. Acta Botanica Brasilica 23:407–13.CrossRefGoogle Scholar
  48. Hieber M, Gessner MO. 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–38.CrossRefGoogle Scholar
  49. ICNF. 2013. IFN6 – Áreas dos usos do solo e das espécies florestais de Portugal continental. Resultados preliminares. Lisbon: Instituto de Conservação da Natureza e das Florestas. p 34.Google Scholar
  50. IFN3. 2007. Tercer inventario forestal nacional. Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
  51. Iglesias-Trabado G, Wilstermann D. 2009. Eucalyptus Universalis. Global cultivated eucalypt forests map 2009. GIT Forestry Consulting’s Eucalyptologics: Information resources on Eucalyptus cultivation worldwide. Available at
  52. Kiffer WP Jr, Mendes F, Casotti CG, Costa LC, Moretti MS. 2018. Exotic Eucalyptus leaves are preferred over tougher native species but affect the growth and survival of shredders in an Atlantic Forest stream (Brazil). PLoS ONE 13:e0190743.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kominoski JS, Shah JJF, Canhoto C, Fischer DG, Giling DP, González E, Griffiths NA, Larrañaga A, LeRoy CJ, Mineau MM, McElarney YR. 2013. Forecasting functional implications of global changes in riparian plant communities. Front Ecol Environ 11:423–32.CrossRefGoogle Scholar
  54. Kuehn KA, Francoeur SN, Findlay RH, Neely RK. 2014. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95:749–62.CrossRefPubMedGoogle Scholar
  55. Lara A, Little C, Urrutia R, McPhee J, Álvarez-Garretón C, Oyarzún C, Soto D, Donoso P, Nahuelhual L, Pino M, Arismendi I. 2009. Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. For Ecol Manag 258:415–24.CrossRefGoogle Scholar
  56. Larrañaga A, Basaguren A, Elosegi A, Pozo J. 2009a. Impacts of Eucalyptus globulus plantations on Atlantic streams: changes in invertebrate density and shredders traits. Fundam Appl Limnol/Archiv für Hydrobiologie 175:151–60.CrossRefGoogle Scholar
  57. Larrañaga A, Basaguren A, Pozo J. 2009b. Impacts of Eucalyptus globulus plantations on physiology and population densities of invertebrates inhabiting Iberian Atlantic streams. Int Rev Hydrobiol 94:497–511.CrossRefGoogle Scholar
  58. Larrañaga S, Larrañaga A, Basaguren A, Elosegi A, Pozo J. 2014. Effects of exotic eucalypt plantations on organic matter processing in Iberian streams. Int Rev Hydrobiol 99:363–72.CrossRefGoogle Scholar
  59. Mcintosh AR, Greig HS, Mcmurtrie SA, Nystrøm PER, Winterbourn MJ. 2005. Top-down and bottom-up influences on populations of a stream detritivore. Freshw Biol 50:1206–18.CrossRefGoogle Scholar
  60. Molinero J, Pozo J, González E. 1996. Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshw Biol 36:745–56.CrossRefGoogle Scholar
  61. Molinero J, Pozo J. 2004. Impact of a eucalyptus (Eucalyptus globulus Labill.) plantation on the nutrient content and dynamics of coarse particulate organic matter (CPOM) in a small stream. Hydrobiologia 528:143–65.CrossRefGoogle Scholar
  62. Molinero J, Pozo J. 2006. Organic matter, nitrogen and phosphorus fluxes associated with leaf litter in two small streams with different riparian vegetation: a budget approach. Archiv für Hydrobiologie 166:363–85.CrossRefGoogle Scholar
  63. Muñoz-Concha D, Voguel H, Razmilic I. 2004. Variación de compuestos químicos en hojas de poblaciones de Drimys spp. (Magnoliophyta: Winteraceae) en Chile. Revista Chilena de Historia Natural 77:43–50.CrossRefGoogle Scholar
  64. Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ. 2015. Changes in planted forests and future global implications. For Ecol Manag 352:57–67.CrossRefGoogle Scholar
  65. Pozo J, Basaguren A, Elosegui A, Molinero J, Fabre E, Chauvet E. 1998. Afforestation with Eucalyptus globulus and leaf litter decomposition in streams of northern Spain. Hydrobiologia 373(374):101–9.CrossRefGoogle Scholar
  66. Pozo J, González E, Díez JR, Molinero J, Elosegui A. 1997. Inputs of particulate organic matter to streams with different riparian vegetation. J N Am Benthol Soc 16:602–11.CrossRefGoogle Scholar
  67. Rezende RS, Petrucio MM, Gonçalves JF Jr. 2014. The effects of spatial scale on breakdown of leaves in a tropical watershed. PlosOne 9:e97072.CrossRefGoogle Scholar
  68. Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J, GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–62.CrossRefPubMedGoogle Scholar
  69. Santiago J, Molinero J, Pozo J. 2012. Impact of timber harvesting on litterfall inputs and benthic coarse particulate organic matter (CPOM) storage in a small stream draining a eucalyptus plantation. For Ecol Manage 262:1146–56.CrossRefGoogle Scholar
  70. Scott DF, Lesch W. 1997. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. J Hydrol 199:360–77.CrossRefGoogle Scholar
  71. Siegloch AE, Suriano M, Spies M, Fonseca-Gessner A. 2014. Effect of land use on mayfly assemblages structure in Neotropical headwater streams. Anais da Academia Brasileira de Ciencias 86:1735–47.CrossRefPubMedGoogle Scholar
  72. Teixeira-de-Mello F, Meerhoff M, Baattrup-Pedersen A, Maigaard T, Kristensen PB, Andersen TK, Clemente JM, Fosalba C, Kristensen EA, Masdeu M, Riis T, Mazzeo N, Jeppesen E. 2012. Community structure of fish in lowland streams differ substantially between subtropical and temperate climates. Hydrobiologia 684:143–60.CrossRefGoogle Scholar
  73. Teixeira-de-Mello F, Meerhoff M, González-Bergonzoni I, Kristensen EA, Baattrup-Pedersen A, Jeppesen E. 2015. Influence of riparian forests on fish assemblages in temperate lowland streams. Environ Biol Fishes 99:133–44.CrossRefGoogle Scholar
  74. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130–7.CrossRefGoogle Scholar
  75. von Schiller D, Acuña V, Aristi I, Arroita M, Basaguren A, Bellin A, Boyero L, Butturini A, Ginebreda A, Kalogianni E, Larrañaga A, Majone B, Martínez A, Monroy S, Muñoz I, Paunovic M, Pereda O, Petrovic M, Pozo J, Rodríguez-Mozaz S, Rivas D, Sabater S, Sabater F, Skoulikidis N, Solagaistua L, Vardakas L, Elosegi A. 2017. River ecosystem processes: a synthesis of approaches, criteria of use and sensitivity to environmental stressors. Sci Total Environ 595–597:465–80.CrossRefGoogle Scholar
  76. Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnússon B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA. 2006. Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci 103:1342–6.CrossRefPubMedGoogle Scholar
  77. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–4.CrossRefGoogle Scholar
  78. Wallace BC, Lajeunesse MJ, Dietz G, Dahabreh IJ, Trikalinos TA, Schmid CH, Gurevitch J. 2017. OpenMEE: intuitive, open-source software for meta-analysis in ecology and evolutionary biology. Methods Ecol Evol 8:941–7.CrossRefGoogle Scholar
  79. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursière JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LBM, Chauvet E. 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–40.CrossRefPubMedGoogle Scholar
  80. Yule CM, Leong MY, Liew KC, Ratnarajah L, Schmidt K, Wong HM, Pearson RG, Boyero L. 2009. Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J N Am Benthol Soc 28:404–15.CrossRefGoogle Scholar
  81. Zomer RJ, Trabucco A, Bossio DA, Verchot LV. 2008. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agr Ecosyst Environ 126:67–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Verónica Ferreira
    • 1
    Email author
  • Luz Boyero
    • 2
    • 3
    • 4
  • Clementina Calvo
    • 5
  • Francisco Correa
    • 6
  • Ricardo Figueroa
    • 7
  • José Francisco GonçalvesJr.
    • 8
  • Guillermo Goyenola
    • 5
  • Manuel A. S. Graça
    • 1
  • Luiz U. Hepp
    • 9
  • Samuel Kariuki
    • 10
  • Anahí López-Rodríguez
    • 5
  • Néstor Mazzeo
    • 5
  • Charles M’Erimba
    • 10
  • Silvia Monroy
    • 2
  • Alessandra Peil
    • 8
  • Jesús Pozo
    • 2
  • Renan Rezende
    • 11
  • Franco Teixeira-de-Mello
    • 5
  1. 1.Department of Life Sciences, MARE – Marine and Environmental Sciences CentreUniversity of CoimbraCoimbraPortugal
  2. 2.Department of Plant Biology and Ecology, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  4. 4.College of Science and EngineeringJames Cook UniversityTownsvilleAustralia
  5. 5.Grupo de Ecología y Rehabilitación de Sistemas Acuáticos, Departamento de Ecología y Gestión Ambiental, Centro Universitario de la Región EsteUniversidad de la RepúblicaMontevideoUruguay
  6. 6.Department of Environmental Science, Faculty of Natural ResourceCatholic University of TemucoTemucoChile
  7. 7.Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA-ChileUniversidad de ConcepciónConcepciónChile
  8. 8.AquaRiparia/Departamento de Ecologia, Instituto de Ciências BiológicasUniversidade de Brasília – UnBBrasíliaBrazil
  9. 9.Departamento de Ciências BiológicasUniversidade Regional Integrada do Alto Uruguai e das MissõesErechimBrazil
  10. 10.Department of Biological SciencesEgerton UniversityNjoroKenya
  11. 11.Program of Postgraduate in Environmental SciencesCommunity University of the Chapecó RegionChapecóBrazil

Personalised recommendations