Sensitivity of Boreal Carbon Stocks to Fire Return Interval, Fire Severity and Fire Season: A Simulation Study of Black Spruce Forests

Abstract

Boreal forests store substantial amounts of carbon in vegetation and soil pools. The magnitude of these pools is related to fire regime attributes. Climate change is expected to alter boreal fire regimes, leading to changes in the amount of stored carbon. Quantifying these changes is of importance to understanding and managing global carbon budgets. We investigate how fire return interval (FRI) interacts with seasonal variation in fire intensity and severity to affect carbon stocks and fluxes in the boreal black spruce forests of Québec, Canada. A size-class structured population model of stand dynamics was coupled with an established model of boreal carbon dynamics and linked to a simplified representation of fire regime that simulates the occurrence of fires and their direct effects on canopy tree mortality, surface fuels combustion and regeneration. We simulated carbon stocks and fluxes under seven levels of FRI and two fire seasons: spring and summer. We tested for an effect of these fire regime parameters on equilibrium mean C stocks. All dead organic matter and biomass carbon stocks were sensitive to FRI between 60 and 300 years. These C stocks were lower for summer fires that occurred under shorter FRIs. Net primary production was highest at FRIs between 150 and 300 years. Total C stocks were highest for FRIs from 150 to 700 years, varying little over this range. There was a small but significant difference of C pool sizes between stands with even and uneven tree-diameter distributions. This difference was greatest for FRIs of 150 years or less. Reductions in equilibrium C storage are forecasted for nearly 27% of the study region under expected end-of-century climates.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Alexander ME, Cruz MG. 2012. Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. Int J Wildland Fire 21:95–113.

    Article  Google Scholar 

  2. Amiro BD, Cantin A, Flannigan MD, de Groot WJ. 2009. Future emissions from Canadian boreal forest fires. Can J For Res 39:383–95.

    Article  CAS  Google Scholar 

  3. Andrews PL. 2009. BehavePlus fire modeling system, version 5.0: variables. http://www.fs.fed.us/rm/pubs/rmrs_gtr213.pdf. Accessed 20 June 2017.

  4. Baker WL. 1995. Longterm response of disturbance landscape to human intervention global change. Landsc Ecol 10:143–59.

    Article  Google Scholar 

  5. Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J. 2009. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob Change Biol 15:578–600.

    Article  Google Scholar 

  6. Bergeron Y, Gauthier S, Flannigan M, Kafka V. 2004. Fire regimes at the transition between mixedwood and coniferous boreal forest in northwestern Quebec. Ecology 85:1916–32.

    Article  Google Scholar 

  7. Bergeron Y, Cyr D, Drever CR, Flannigan M, Gauthier S, Kneeshaw D, Lauzon È, Leduc A, Le Goff H, Lesieur D, Logan K. 2006. Past, current, and future fire frequencies in Quebec’s commercial forests: implications for the cumulative effects of harvesting and fire on age-class structure and natural disturbance-based management. Can J For Res 36:2737–44.

    Article  Google Scholar 

  8. Bessie WC, Johnson EA. 1995. The relative importance of fuels and weather on fire behavior in subalpine forests. Fuel 76:447–762.

    Google Scholar 

  9. Boiffin J. 2014. Résilience des pessières à mousses du Québec aux incendies peu sévères: Conséquences pour le cycle du carbone à long terme. Ph.D. Dissertation. Université Laval.

  10. Boisvenue C, Bergeron Y, Bernier P, Peng C. 2012. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management. Carbon Manag 3:553–68.

    Article  CAS  Google Scholar 

  11. Boisvenue C, Running SW. 2006. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glob Change Biol 12:862–82.

    Article  Google Scholar 

  12. Boisvenue C, Smiley BP, White JC, Kurz WA, Wulder MA. 2016. Improving carbon monitoring and reporting in forests using spatial-explicit information. Carbon Balance Manag 11:1–16.

    Article  CAS  Google Scholar 

  13. Bona KA, Fyles JW, Shaw C, Kurz WA. 2013. Are mosses required to accurately predict upland black spruce forest soil carbon in national-scale forest C accounting models? Ecosystems 16:1071–86.

    Article  CAS  Google Scholar 

  14. Bouchard M, Pothier D, Gauthier S. 2008. Fire return intervals and tree species succession in the North Shore region of eastern Quebec. Can J For Res 38:1621–33.

    Article  Google Scholar 

  15. Boucher D, De Grandpré L, Gauthier S. 2003. Development of a statistical tool for classifying stand structure and comparison of two territories in the black spruce-moss forest region of Québec. For Chron 79:318–28.

    Article  Google Scholar 

  16. Boulanger Y, Gauthier S, Gray DR, Le Goff H, Lefort P, Morisette J. 2013. Fire regime zonation under current and future climate over eastern Canada. Ecol Appl 23:904–23.

    Article  PubMed  Google Scholar 

  17. Brassard BW, Chen HYH. 2006. Stand structural dynamics of North American boreal forests. Crit Rev Plant Sci 25:115–37.

    Article  Google Scholar 

  18. Byram GM. 1959. Combustion of forest fuels. In: Davis KP, Ed. Forest fire: control and use. New York: McGraw-Hill. p 61–89.

    Google Scholar 

  19. Caswell H. 2001. Matrix population models: construction, analysis, and interpretation. Sunderland: Sinauer Associates. p 722.

    Google Scholar 

  20. Catchpole EA, Alexander ME, Gill AM. 1992. Elliptical-fire perimeter-and area-intensity distributions. Can J For Res 22:968–72.

    Article  Google Scholar 

  21. Chen W, Chen JM, Price DT, Cihlar J. 2002. Effects of stand age on net primary productivity of boreal black spruce forests in Ontario, Canada. Can J For Res 32:833–42.

    Article  Google Scholar 

  22. Chen W, Zhang Q, Cihlar J, Bauhus J, Price DT. 2004. Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: a new approach. Plant Soil 265:31–46.

    Article  CAS  Google Scholar 

  23. Cruz MG, Alexander ME, Wakimoto RH. 2003. Assessing canopy fuel stratum characteristics in crown fire prone fuel types of western North America. Int J Wildland Fire 12:39–50.

    Article  Google Scholar 

  24. de Groot WJ, Bothwell PM, Carlsson DH, Logan KA. 2003. Simulating the effects of future fire regimes on western Canadian boreal forests. J Veg Sci 14:355–64.

    Article  Google Scholar 

  25. de Groot WJ, Cantin AS, Flannigan MD, Soja AJ, Gowman LM, Newbery A. 2013. A comparison of Canadian and Russian boreal forest fire regimes. For Ecol Manag 294:23–4.

    Article  Google Scholar 

  26. DeLuca TH, Boisvenue C. 2012. Boreal forest soil carbon: distribution, function and modelling. Forestry 85:161–84.

    Article  Google Scholar 

  27. Ecological Stratification Working Group. 1996. A national ecological framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch. Ottawa/Hull. Report and national Map at 1:7 5000 000 scale.

  28. Environment Canada. 2015. Canadian climate normal and averages 1971-2000. Environment Canada. http://www.climate.weather.gc.ca/climate_normals. Accessed 20 June 2017.

  29. Flannigan MD, Van Wagner C. 1991. Climate change and wildfire in Canada. Can J For Res 21:66–72.

    Article  Google Scholar 

  30. Forestry Canada Fire Danger Group. 1992. Development and structure of the Canadian forest fire behavior prediction system. pp 1–64. http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/10068.pdf. Accessed 20 June 2017.

  31. Fortin M, Langevin L. 2010. ARÉMIS-2009: un modèle de croissance basé sur une approache par tiges individuelles pour les forêts du Québec. Québec, QC: Direction de la Recherche Forestière, Mémoire de recherche forestière. p 156.

  32. Girardin MP, Ali AA, Carcaillet C, Mudelsee M, Drobyshev I, Hély C, Bergeron Y. 2009. Heterogeneous response of circumboreal wildfire risk to climate change since the early 1900s. Glob Change Biol 15:2751–69.

    Article  Google Scholar 

  33. Girardin MP, Hogg EH, Bernier PY, Kurz WA, Guo XJ, Cyr G. 2015. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob Change Biol 22:627–43.

    Article  Google Scholar 

  34. Gower S, Krankina O, Olson R. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–411.

    Article  Google Scholar 

  35. Grant RF, Barr AG, Black TA, Margolis H, Mccaughey JH, Trofymow JA. 2010. Net ecosystem productivity of temperate and boreal forests after clearcutting: a Fluxnet Canada measurement and modelling synthesis. Tellus 62:475–96.

    Article  CAS  Google Scholar 

  36. Greene DF, Johnson EA. 1999. Modelling recruitment of Populus tremuloides, Pinus banksiana, and Picea mariana following fire in the mixedwood boreal forest. Can J For Res 29:462–73.

    Article  Google Scholar 

  37. Hagemann U, Moroni MT, Shaw CH, Kurz WA, Makeschin F. 2010. Comparing measured and modelled forest carbon stocks in high-boreal forests of harvest and natural-disturbance origin in Labrador, Canada. Ecol Model 221:825–39.

    Article  CAS  Google Scholar 

  38. Hermle S, Lavigne MB, Bernier PY, Bergeron O, Paré D. 2010. Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec. Tree Physiol 30:527–40.

    Article  CAS  PubMed  Google Scholar 

  39. Holdaway MR. 1986. Modeling tree crown ratio. For Chron 62:451–5.

    Article  Google Scholar 

  40. Irulappa Pillai Vijayakumar DB, Raulier F, Bernier P, Paré D, Gauthier S, Bergeron Y, Pothier D. 2016. Cover density recover after fire disturbance controls landscape aboveground biomass carbon in the boreal forest of eastern Canada. For Ecol Manag 360:170–80.

    Article  Google Scholar 

  41. Intergovernmental Panel on Climate Change (IPCC). 2007. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  42. Johnson EA. 1992. Fire and vegetation dynamics-studies from the North American boreal forest. Cambridge: Cambridge University Press. p 144.

    Book  Google Scholar 

  43. Johnson KD, Harden J, McGuire AD, Bliss NB, Bockheim JG, Clark M, Nettleton-Hollingsworth T, Jorgenson MT, Kane ES, Mack M, O’Donnell J, Ping CL, Schuur EAG, Turetsky MR, Valentine DW. 2011. Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma 167–168:71–84.

    Article  CAS  Google Scholar 

  44. Johnstone JF, Chapin FS, Hollingsworth TN, Mack MC, Romanovsky V, Turestsky M. 2010. Fire, climate change, and forest resilience in interior Alaska. Can J For Res 40:1302–12.

    Article  Google Scholar 

  45. Kashian DM, Romme WH, Tinker DB, Monica G, Ryan MG, Turner MG. 2006. Carbon storage on landscapes with stand-replacing fires. Bioscience 56:598–606.

    Article  Google Scholar 

  46. Kasischke ES, Christensen NL, Stocks BJ. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol Appl 5:437–51.

    Article  Google Scholar 

  47. Kull S, Rampley G, Morken S, Metsaranta J, Neilson E, Kurz WA. 2011. Operational-scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) version 1.2: user’s guide. Natural Resources Canada, Canadian Forest Service, Northern Forestry Center, Edmonton, AB.

  48. Kurz WA, Apps MJ, Bekema SJ, Lekstrum T. 1995. 20th century carbon budget of Canadian forests. Tellus 47:170–7.

    Article  Google Scholar 

  49. Kurz WA, Stinson G, Rampley G. 2008. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B 363:2261–9.

    Article  Google Scholar 

  50. Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow J, Metsaranta J, Apps MJ. 2009. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504.

    Article  Google Scholar 

  51. Kurz WA, Shaw CH, Boisvenue C, Stinson G, Metsaranta J, Leckie D, Dyk A, Smyth C, Neilson E. 2013. Carbon in Canada’s boreal forest-a synthesis. Environ Rev 21:260–92.

    Article  CAS  Google Scholar 

  52. Lacerte V, Larocque GR, Woods M, Parton WJ, Penner M. 2006. Calibration of the forest vegetation simulator (FVS) model for the main forest species of Ontario, Canada. Ecol Model 199:336–49.

    Article  Google Scholar 

  53. Laganière J, Paré D, Bergeron Y, Chen HYH, Brassard BW, Cavard X. 2013. Stability of soil carbon stocks varies with forest composition in the Canadian boreal biome. Ecosystems 16:852–65.

    Article  CAS  Google Scholar 

  54. Lambert MC, Ung CH, Raulier F. 2005. Canadian national tree aboveground biomass equations. Can J For Res 35:1996–2018.

    Article  Google Scholar 

  55. Le Goff H, Flannigan MD, Bergeron Y. 2009. Potential changes in monthly fire risk in the eastern Canadian boreal forest under future climate change. Can J For Res 39:2369–80.

    Article  Google Scholar 

  56. Lemprière TC, Kurz WA, Hogg EH, Schmoll C, Rampley GJ, Yemshanov D, McKenney DW, Gilsenan R, Beatch A, Blain D, Bhatti JS, Krcmar E. 2013. Canadian boreal forests and climate change mitigation. Environ Rev 21:293–321.

    Article  Google Scholar 

  57. Manies KL, Harden JW, Bond-Lambert BP, O’Neill KP. 2005. Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage. Can J For Res 482:472–82.

    Article  Google Scholar 

  58. Marchal J, Cumming SG, McIntire EJB. 2017. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: implications for fire risk management. PLoS ONE 12(9):e0185515.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Matthias L, Kenkel N, de Groot A, Kneeshaw D, Macdonald E, Messier C, Morin H, Ruel JC, Wang G. 2003. Differential growth and mortality of advance regeneration across the Canadian boreal forest. University of Alberta, Alberta, Canada, Project Reports 2003/2004.

  60. Ministère des Forets, de la Faune et des Parcs Naturelles du Québec (MFFP). 2008. Forest Inventory Norms (draft). Québec: Forest Inventory Division.

  61. Ministère des Ressources naturelles et de la Faune (MRNF). 2008. Sustainable management in the boreal forest: a real response to environmental challenges. Québec: Ministère des Ressources naturelles et de la Faune, Direction de l´environnement et de la protection des forêts. p 51.

  62. Miquelajauregui Y, Cumming SG, Gauthier S. 2016. Modelling variable fire severity in boreal forests: effects of fire intensity and stand structure. PLoS ONE 11(2):e0150073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moroni MT, Hagemann U, Beilman DW. 2010. Dead wood is buried and preserved in a Labrador Boreal. Forest 13:452–8.

    CAS  Google Scholar 

  64. Ouimet R, Camiré C, Brazeau M, Moore JD. 2008. Estimation of coarse root biomass and nutrient content for sugar maple, jack pine, and black spruce using stem diameter at breast height. Can J For Res 38:92–100.

    Article  Google Scholar 

  65. Peng C. 1999. Nonlinear height-diameter models for nine boreal forest. Sault Ste. Marie: Ontario Forest Research Institute, For. Res. Rep. p 155.

  66. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, R Core Team. 2015. NMLE: linear and nonlinear mixed effects models. R package version 3.1-127.

  67. Price DT, Alfaro RI, Brown KJ, Flannigan MD, Flemig RA, Hogg EH, Girardin MP, Lakusta T, Johnston M, McKenney DW, Pedlar JH, Stratton T, Sturrock RN, Thompson ID, Trofymow JA, Venier LA. 2013. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ Rev 365:322–65.

    Article  Google Scholar 

  68. R Development Core Team. 2012. R: a language and environment for statistical computing.

  69. Reinhardt E, Crookston N. 2003. The fire and fuels extension to the forest vegetation simulator (No. RMRS-GTR-116). Ogden: Department of Agriculture, Forest Service Center, Rocky Mountain Research Station.

  70. Rowe J. 1972. Forest regions of Canada. Ottawa: Can For Serv.

    Google Scholar 

  71. Ryan KC, Reinhardt ED. 1988. Predicting postfire mortality of seven western conifers. Can J For Res 18:1291–7.

    Article  Google Scholar 

  72. Ryan KC. 2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36:13–39.

    Article  Google Scholar 

  73. Saucier JP, Bergeron JF, Grondin P, Robitaille A. 1998. Les regions écologiques du Québec méridional.

  74. Scheller RM, Hua D, Bolstad PV, Birdsey R, Mladenoff DJ. 2011. The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests. Ecol Model 222:144–53.

    Article  CAS  Google Scholar 

  75. Soil Classification Working Group. 1998. The Canadian system of soil classification. Agriculture and Agri-Food Canada Publ. 1646 (revised). Ottawa: NRC Research Press.

  76. SOPFEU. 2012. Plan stratégique 2012-2015. pp 1–24. http://www.sopfeu.qc.ca. Accessed 20 June 2017.

  77. Stevens-Rumann CS, Sieg CH, Hunter ME. 2012. Ten years after wildfires: how does varying tree mortality impact fire hazard and forest resiliency? For Ecol Manag 267:199–208.

    Article  Google Scholar 

  78. Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D. 2011. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Change Biol 17:2227–44.

    Article  Google Scholar 

  79. Stocks BJ. 1980. Black spruce crown fuel weights in northern Ontario. Can J For Res 10:498–501.

    Article  Google Scholar 

  80. Tremblay S, Ouimet R, Houle D. 2002. Prediction of organic carbon content in upland forest soils of Quebec, Canada. Can J For Res 32:903–14.

    Article  Google Scholar 

  81. Turestsky MR, Kane ES, Harden JW, Ottmar RD, Manies KL, Hoy E, Kasischke ES. 2011. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat Geosci 4:27–31.

    Article  CAS  Google Scholar 

  82. van Bellen S, Garneau M, Bergeron Y. 2010. Impact of climate change on forest fire severity and consequences for carbon stocks in boreal forest stands of Quebec, Canada: a synthesis. Fire Ecol 6:16–44.

    Article  Google Scholar 

  83. Van Bogaert R, Gauthier S, Raulier F, Saucier J, Boucher D, Robitaille A, Bergeron Y. 2015. Exploring forest productivity at an early age after fire : a case study at the northern limit of commercial forests in Quebec. Can J For Res 45:1–15.

    Article  Google Scholar 

  84. Van Wagner CE. 1973. Height of crown scorch in forest fires. Can J For Res 3:373–8.

    Article  Google Scholar 

  85. Van Wagner CE. 1977. Conditions for the start and spread of crown fire. Can J For Res 7:23–34.

    Article  Google Scholar 

  86. Van Wagner CE. 1978. Age-class distribution and the forest fire cycle. Can J For Res 8:220–7.

    Article  Google Scholar 

  87. Wang W, Peng C, Kneeshaw DD, Larocque GR, Lei X, Zhu Q, Song X, Tong Q. 2013. Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change. Can J For Res 43:469–79.

    Article  CAS  Google Scholar 

  88. Weber MG, Flannigan MD. 1997. Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ Rev 5:145–66.

    Article  CAS  Google Scholar 

  89. Wotton BM, Alexander ME, Taulor S. 2009. Updates and revisions to the 1992 Canadian forest fire behavior prediction system. pp 1–45. http://www.cfs.nrcan.gc.ca/bookstore_pdfs/31414.pdf. Accessed 20 June 2017.

  90. Zuur AF, Ieno EN, Walker NJ, Saveliev A, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by an Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant No. 365322-2008), Strategic grant to A.D. Munson, R.L. Bradley, S.G. Cumming, S. Gauthier, D. Paré and S. Quideau, and a NSERC- CGS D-Alexander Graham Bell Graduate scholarship to Y. Miquelajauregui. We thank the Centre d’étude de la forêt for financial and logistic support. Very special thanks to M. Fortin and J. Marchal for their assistance during the model implementation. We thank the Ministère des Forêts, de la Faune et des Parcs (MFFP) and the Societé de protection des forêts contre le feu (SOPFEU) for allowing us to use the inventory and forest fire archives. We thank P. Bernier and C. Boisvenue for the invaluable comments provided to earlier versions of this manuscript. We thank R. García for his help preparing the code for publication.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yosune Miquelajauregui.

Additional information

Author’s Contribution

YM, SGC and SG conceived of or designed study; YM performed research; YM analyzed data; YM, SGC and SG contributed new methods or models; YM, SGC, SG wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1019 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miquelajauregui, Y., Cumming, S.G. & Gauthier, S. Sensitivity of Boreal Carbon Stocks to Fire Return Interval, Fire Severity and Fire Season: A Simulation Study of Black Spruce Forests. Ecosystems 22, 544–562 (2019). https://doi.org/10.1007/s10021-018-0287-4

Download citation

Keywords

  • boreal forest
  • size-class structured population models
  • stand dynamics
  • carbon stocks
  • fire regime