Ecosystem Responses to Climate-Related Changes in a Mediterranean Alpine Environment Over the Last ~ 180 Years

Abstract

The effect of recent climatic warming is significant in the Mediterranean region, especially in high-mountain areas. This study uses multiple sedimentary proxies from Río Seco Lake, a remote alpine lake in the Sierra Nevada, southeastern Spain, to reconstruct recent environmental and ecological changes in the lake and catchment. Two main climatic periods can be distinguished during the past 180 years: Period One (1820 to ~ 1920s) characterized by colder and wetter conditions than the more recent Period Two (~ 1920s to the present), characterized by warmer and drier conditions. Independent proxies such as subfossil chironomid assemblages, n-alkane indices, pollen data and/or spectrally inferred chlorophyll-a concentrations indicate a longer ice-cover period, colder water temperature and more pronounced accumulation of snow in the catchment during Period One than in Period Two, likely producing water stress for catchment plant growth because of the low rate of ice melting in Period One. As temperature increases and precipitation decreases from the 1920s onwards, a wider development of wetland plants is observed, which is associated with the longer warm season that contributed to snow and ice melting in the catchment. This continuing temperature rise and precipitation decrease over the past 60-years by ~ 0.24°C per decade and –0.92 mm/y, respectively, lead to an important increase in chlorophyll-a and changes in lake biotic assemblages. Major chironomid community structure changes to warmer water taxa were recorded, resulting in a 2°C increase in mean July air temperature inferred by chironomids from ~ 1950 onwards. An inferred increase in primary production for the past few decades is consistent with higher temperatures, while wider development of wetland plants is associated with longer warm season. The coherence between independent environmental proxies, each associated with distinct mechanistic linkages to climatic shifts, strengthens our interpretations of a recent warming trend and an intensification of summer drought in this high-mountain area leading to distinct changes in the lake and its catchment. The impact of this climate change on the summits of Sierra Nevada and its influence transcends its geographical limits because these systems provide ecosystem services to a vast area.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–97.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C. 2011. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–29.

    Article  Google Scholar 

  3. Appleby PG, Oldfield F. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35.

    Article  CAS  Google Scholar 

  4. Battarbee RW, Grytnes JA, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A. 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–79.

    Article  Google Scholar 

  5. Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31.

    Article  Google Scholar 

  6. Bennett KD. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–70.

    Article  Google Scholar 

  7. Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M. 2006. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–71.

    Article  Google Scholar 

  8. Bonet FJ, Pérez-Luque AJ, Pérez-Pérez R. 2016. Trend analysis (2000–2014) of the snow cover by satellite (MODIS sensor). In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía. p 43–6.

    Google Scholar 

  9. Brooks S, Heiri O. 2013. Response of chironomid assemblages to environmental change during the early Late-glacial at Gerzensee, Switzerland. Palaeogeogr Palaeoclimatol Palaeoecol 391:90–8.

    Article  Google Scholar 

  10. Brooks SJ, Langdon PG, Heiri O. 2007. The identification and use of palaearctic chironomidae larvae in palaeoecology (issue 10 of technical guide). Cambridge: Quaternary Research Association.

    Google Scholar 

  11. Bush RT, McInerney FA. 2013. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–79.

    Article  CAS  Google Scholar 

  12. Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–8.

    CAS  Google Scholar 

  13. Eakins JD, Morrison RT. 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radioact Isot 29:531–6.

    Article  CAS  Google Scholar 

  14. Faegri K, Iversen J. 1989. Textbook of pollen analysis. New York: Wiley.

    Google Scholar 

  15. Fee EJ, Shearer JA, DeBruyn ER, Schindler EU. 1992. Effects of lake size on phytoplankton photosynthesis. Can J Fish Aquat Sci 49:2445–59.

    Article  Google Scholar 

  16. Ficken KJ, Li B, Swain DL, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–9.

    Article  CAS  Google Scholar 

  17. García-Alix A, Jiménez Espejo FJ, Toney JL, Jiménez-Moreno G, Ramos-Román MJ, Anderson RS, Ruano P, Queralt I, Delgado Huertas A, Kuroda J. 2017. Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations. Sci Rep 7:7439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. García-Alix A, Jiménez-Moreno G, Anderson RS, Jiménez-Espejo FJ, Delgado Huertas A. 2012. Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada. J Paleolimnol 48:471–84.

    Article  Google Scholar 

  19. Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33:1–4.

    Article  Google Scholar 

  20. Grimm EC, Ed. 2004. Tilia and TG view version 2.0.2. Illinois State Museum, Research and Collection Center: Springfield (IL).

    Google Scholar 

  21. Grunewald K, Scheithauer J. 2010. Europe’s southernmost glaciers: response and adaptation to climate change. J Glaciol 56:129–42.

    Article  Google Scholar 

  22. Han J, Calvin M. 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci 64:436–43.

    Article  CAS  PubMed  Google Scholar 

  23. Heiri O, Brooks SJ, Birks JB, Lotter AF. 2011. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3445–56.

    Article  Google Scholar 

  24. Heiri O, Lotter AF. 2010. How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601.

    Article  Google Scholar 

  25. Heiri O, Lotter AF, Hausmann S, Kienast F. 2003. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 4:477–84.

    Article  Google Scholar 

  26. Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–10.

    Article  Google Scholar 

  27. IPCC. 2013. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp 3–17.

  28. Jiménez L, Romero-Viana L, Conde-Porcuna JM, Perez-Martinez C. 2015. Sedimentary photosynthetic pigments as indicators of climate and watershed perturbations in an alpine lake in southern Spain. Limnetica 34:439–54.

    Google Scholar 

  29. Jiménez L, Rühland KM, Jeziorski A, Smol JP, Pérez-Martínez C. 2018. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Global Change Biol 24:e139–58.

    Article  Google Scholar 

  30. Jiménez-Espejo FJ, García-Alix A, Jiménez-Moreno G, Rodrigo-Gámiz M, Anderson RS, Rodríguez-Tovar FJ, Martínez-Ruiz F, Giralt S, Delgado Huertas A, Pardo-Igúzquiza EP. 2014. Saharan aeolian input and effective humidity variations over western Europe during the Holocene from a high altitude record. Chem Geol 374–375:1–12.

    Article  CAS  Google Scholar 

  31. Jiménez-Moreno G, Anderson RS. 2012. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quat Res 77:44–53.

    Article  Google Scholar 

  32. Jiménez-Moreno G, García-Alix A, Hernández-Corbalán MD, Anderson RS, Delgado-Huertas A. 2013. Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quat Res 79:110–22.

    Article  Google Scholar 

  33. Juggins S. 2007. C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: Newcastle University.

    Google Scholar 

  34. Juggins S. 2012. Rioja: analysis of quaternary science data. R package version 0.9-9. Retrieved from http://cran.r-project.org/package=rioja.

  35. Laville H, Vílchez-Quero A. 1986. Les Chironomidés (Diptera) de quelques « lagunas » de haute altitude de la Sierra Nevada (Granada, Espagne). Ann Limnol Int J Limnol 22:53–63.

    Article  Google Scholar 

  36. Lionello P. 2012. The climate of the Mediterranean region: from the past to the future. Amsterdam: Elsevier.

    Google Scholar 

  37. Lotter AF, Birks HJB, Hofmann W, Marchetto A. 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–63.

    Article  Google Scholar 

  38. Meyers PA, Teranes JL. 2001. Sediment organic matter. In: Last WM, Smol JP, Eds. Tracking environmental change using lake sediments. New York: Springer. p 239–69.

    Google Scholar 

  39. Michelutti N, Smol JP. 2016. Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–65.

    Article  Google Scholar 

  40. Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP. 2005. Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715.

    Article  Google Scholar 

  41. Morales-Baquero R, Pulido-Villena E, Reche I. 2006. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr 51:830–7.

    Article  CAS  Google Scholar 

  42. Nogués-Bravo D, López-Moreno JI, Vicente-Serrano SM. 2012. Climate change and its impact. In: Vogiatzakis IN, Ed. Mediterranean mountain environments. Chichester: Wiley-Blackwell. p 185–201.

    Google Scholar 

  43. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2015. Vegan: community ecology package. R package version 2.4-0. Retrieved from http://CRAN.R-project.org/package=vegan.

  44. Oliva M, Gómez-Ortiz A. 2012. Late Holocene environmental dynamics and climate variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from lake sediments and historical sources. Holocene 22:915–27.

    Article  Google Scholar 

  45. Oliva M, Gómez-Ortiz A, Salvador-Franch F, Salvà-Catarineu M, Palacios D, Tanarro L, Ramos M, Pereira P, Ruiz-Fernández J. 2016. Inexistence of permafrost at the top of the Veleta peak (Sierra Nevada, Spain). Sci Total Environ 550:484–94.

    Article  CAS  PubMed  Google Scholar 

  46. Oliva M, Ruiz-Fernández J, Barriendos M, Benito G, Cuadrat JM, Domínguez-Castro F, García-Ruiz JM, Giralt S, Gómez-Ortíz A, Hernández A, López-Costas O, López-Moreno JI, López-Sáez JA, Martínez-Cortizas A, Moreno A, Prohom M, Saz MA, Serrano E, Tejedor E, Trigo R, Valero-Garcés B, Vicente-Serrano SM. 2018. The little ice age in Iberian mountains. Earth Sci Rev 177:175–208.

    Article  Google Scholar 

  47. Oliver DR, Roussel ME. 1983. Redescription of Brillia Kieffer (Diptera, Chironomidae) with descriptions of nearctic species. Can Entomol 115:257–79.

    Article  Google Scholar 

  48. Palomo I, Martín-López B, Potschin M, Haines-Young R, Montes C. 2013. National Parks, buffer zones and surrounding lands: mapping ecosystem service flows. Ecosyst Serv 4:104–16.

    Article  Google Scholar 

  49. Pauli H, Gottfried M, Grabherr G. 1996. Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–90.

    Google Scholar 

  50. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G. 2012. Recent plant diversity changes on Europe’s mountain summits. Science 336:353–5.

    Article  CAS  PubMed  Google Scholar 

  51. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ. 2015. Elevation-dependent warming in mountain regions of the world. Nat Climate Change 5:424–30.

    Article  Google Scholar 

  52. Pérez-Luque AJ, Pérez-Pérez R, Bonet FJ. 2016. Climate change over the last 50 years in Sierra Nevada. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía. p 24–6.

    Google Scholar 

  53. Pérez-Luque AJ, Sánchez-Rojas CP, Zamora R, Pérez-Pérez R, Bonet FJ. 2015. Dataset of phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain). PhytoKeys 46:89–107.

    Article  Google Scholar 

  54. Pérez-Martínez C. 2016. Analysis of the palaeolimnological indicators in the lakes of Sierra Nevada. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía.

    Google Scholar 

  55. Pérez-Martínez C, Jiménez L, Conde-Porcuna JM, Moreno E, Ramos-Rodríguez E, Heiri O, Jiménez-Moreno G, Anderson RS. 2012. Efectos del cambio climático en los ecosistemas acuáticos y terrestres de alta montaña de Sierra Nevada: Análisis del registro fósil en los sedimentos. In: Organismo Autónomo de Parques Naturales, Ed. Proyectos de Investigación en parque nacionales: 2008-2011. Madrid: Ministerio de Agricultura, Alimentación y Medio ambiente. p 71–93.

    Google Scholar 

  56. Pérez-Palazón MJ, Pimentel R, Herrero J, Aguilar C, Perales JM, Polo MJ. 2015. Extreme values of snow-related variables in Mediterranean regions: trends and long-term forecasting in Sierra Nevada (Spain). Proc Int Assoc Hydrol Sci 369:157–62.

    Google Scholar 

  57. Preston DL, Caine N, McKnight DM, Williams MW, Hell K, Miller MP, Hart SJ, Johnson PTJ. 2016. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys Res Lett 43:5353–60.

    Article  Google Scholar 

  58. Pulido-Villena E, Reche I, Morales-Baquero R. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Can J Fish Aquat Sci 62:2640–8.

    Article  CAS  Google Scholar 

  59. R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  60. Real M, Rieradevall M, Prat N. 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshw Biol 43:1–18.

    Article  Google Scholar 

  61. Rühland KM, Hargan KE, Jeziorski A, Paterson AM, Keller W, Smol JP. 2014. A multi-trophic exploratory survey of recent environmental changes using lake sediments in the Hudson Bay Lowlands, Ontario, Canada. Arct Antarct Alp Res 46:139–58.

    Article  Google Scholar 

  62. Rühland KM, Paterson AM, Smol JP. 2015. Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–135.

    Article  Google Scholar 

  63. Ruiz-Sinoga JD, Garcia Marin R, Martinez Murillo F, Gabarron Galeote MA. 2011. Precipitation dynamics in southern Spain: trends and cycles. Int J Climatol 31:2281–9.

    Article  Google Scholar 

  64. Smol JP. 2008. Pollution of lakes and rivers: a paleoenvironmental perspective. 2nd edn. Oxford: Willey-Blackwell publishing. p 396p.

    Google Scholar 

  65. Sorvari S, Korhola A, Thompson R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biol 8:171–81.

    Article  Google Scholar 

  66. ter Braak CJF, Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502.

    Article  Google Scholar 

  67. ter Braak CJF, Juggins S, Birks HJB, van der Voet H. 1993. Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environmental calibration. In: Patil GP, Rao CR, Eds. Multivariate environmental statistics. Amsterdam: Elsevier Science Publishers. p 525–60.

    Google Scholar 

  68. Toms JD, Lesperance ML. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–41.

    Article  Google Scholar 

  69. Udelhoven T, Stellmes M, del Barrio G, Hill J. 2009. Assessment of rainfall and NDVI anomalies in Spain (1989–1999) using distributed lag models. Int J Remote Sens 30:1961–76.

    Article  Google Scholar 

  70. Weckström K, Weckström J, Yliniemi L-M, Korhola A. 2010. The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. J Paleolimnol 43:61–73.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge all colleagues for help with fieldwork. We thank Paleoecological Environmental Assessment and Research Laboratory (PEARL) of Queen’s University at Kingston for processing the spectrally inferred chlorophyll-a record. This study was funded by MMA Project 87/2007 and MINECO Project CGL 2011-23483 to C. P.-M. and a FPU fellowship (AP2007-00352) to L. J. from the Spanish Ministry of Education and Science. A.G.-A. was also supported by a Marie Curie IEF of the 7th Framework Programme of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and a Ramón y Cajal fellowship (RYC-2015-18966) from the MINECO.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Jiménez.

Additional information

Author Contributions

LJ and CP-M conceived or designed the study; LJ, AG-A, JLT, OH, RSA, JMCP and CP-M performed the research; LJ, AG-A, OH, JMCP and CP-M analyzed the data; and LJ, AG-A, JLT, OH, RSA, JMCP and CP-M wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiménez, L., Conde-Porcuna, J.M., García-Alix, A. et al. Ecosystem Responses to Climate-Related Changes in a Mediterranean Alpine Environment Over the Last ~ 180 Years. Ecosystems 22, 563–577 (2019). https://doi.org/10.1007/s10021-018-0286-5

Download citation

Keywords

  • alpine lakes
  • Sierra Nevada
  • warming
  • chironomids
  • n-alkanes
  • chlorophyll-a
  • primary production