pp 1–15 | Cite as

Ecosystem Responses to Climate-Related Changes in a Mediterranean Alpine Environment Over the Last ~ 180 Years

  • Laura JiménezEmail author
  • José M. Conde-Porcuna
  • Antonio García-Alix
  • Jaime L. Toney
  • R. Scott Anderson
  • Oliver Heiri
  • Carmen Pérez-Martínez


The effect of recent climatic warming is significant in the Mediterranean region, especially in high-mountain areas. This study uses multiple sedimentary proxies from Río Seco Lake, a remote alpine lake in the Sierra Nevada, southeastern Spain, to reconstruct recent environmental and ecological changes in the lake and catchment. Two main climatic periods can be distinguished during the past 180 years: Period One (1820 to ~ 1920s) characterized by colder and wetter conditions than the more recent Period Two (~ 1920s to the present), characterized by warmer and drier conditions. Independent proxies such as subfossil chironomid assemblages, n-alkane indices, pollen data and/or spectrally inferred chlorophyll-a concentrations indicate a longer ice-cover period, colder water temperature and more pronounced accumulation of snow in the catchment during Period One than in Period Two, likely producing water stress for catchment plant growth because of the low rate of ice melting in Period One. As temperature increases and precipitation decreases from the 1920s onwards, a wider development of wetland plants is observed, which is associated with the longer warm season that contributed to snow and ice melting in the catchment. This continuing temperature rise and precipitation decrease over the past 60-years by ~ 0.24°C per decade and –0.92 mm/y, respectively, lead to an important increase in chlorophyll-a and changes in lake biotic assemblages. Major chironomid community structure changes to warmer water taxa were recorded, resulting in a 2°C increase in mean July air temperature inferred by chironomids from ~ 1950 onwards. An inferred increase in primary production for the past few decades is consistent with higher temperatures, while wider development of wetland plants is associated with longer warm season. The coherence between independent environmental proxies, each associated with distinct mechanistic linkages to climatic shifts, strengthens our interpretations of a recent warming trend and an intensification of summer drought in this high-mountain area leading to distinct changes in the lake and its catchment. The impact of this climate change on the summits of Sierra Nevada and its influence transcends its geographical limits because these systems provide ecosystem services to a vast area.


alpine lakes Sierra Nevada warming chironomids n-alkanes chlorophyll-a primary production 



The authors wish to acknowledge all colleagues for help with fieldwork. We thank Paleoecological Environmental Assessment and Research Laboratory (PEARL) of Queen’s University at Kingston for processing the spectrally inferred chlorophyll-a record. This study was funded by MMA Project 87/2007 and MINECO Project CGL 2011-23483 to C. P.-M. and a FPU fellowship (AP2007-00352) to L. J. from the Spanish Ministry of Education and Science. A.G.-A. was also supported by a Marie Curie IEF of the 7th Framework Programme of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and a Ramón y Cajal fellowship (RYC-2015-18966) from the MINECO.

Supplementary material

10021_2018_286_MOESM1_ESM.docx (117 kb)
Supplementary material 1 (DOCX 117 kb)


  1. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M. 2009. Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–97.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C. 2011. Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–29.CrossRefGoogle Scholar
  3. Appleby PG, Oldfield F. 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35.CrossRefGoogle Scholar
  4. Battarbee RW, Grytnes JA, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A. 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–79.CrossRefGoogle Scholar
  5. Beniston M. 2003. Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31.CrossRefGoogle Scholar
  6. Bennett KD. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–70.CrossRefGoogle Scholar
  7. Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M. 2006. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–71.CrossRefGoogle Scholar
  8. Bonet FJ, Pérez-Luque AJ, Pérez-Pérez R. 2016. Trend analysis (2000–2014) of the snow cover by satellite (MODIS sensor). In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía. p 43–6.Google Scholar
  9. Brooks S, Heiri O. 2013. Response of chironomid assemblages to environmental change during the early Late-glacial at Gerzensee, Switzerland. Palaeogeogr Palaeoclimatol Palaeoecol 391:90–8.CrossRefGoogle Scholar
  10. Brooks SJ, Langdon PG, Heiri O. 2007. The identification and use of palaearctic chironomidae larvae in palaeoecology (issue 10 of technical guide). Cambridge: Quaternary Research Association.Google Scholar
  11. Bush RT, McInerney FA. 2013. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–79.CrossRefGoogle Scholar
  12. Dean WE. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–8.Google Scholar
  13. Eakins JD, Morrison RT. 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int J Appl Radioact Isot 29:531–6.CrossRefGoogle Scholar
  14. Faegri K, Iversen J. 1989. Textbook of pollen analysis. New York: Wiley.Google Scholar
  15. Fee EJ, Shearer JA, DeBruyn ER, Schindler EU. 1992. Effects of lake size on phytoplankton photosynthesis. Can J Fish Aquat Sci 49:2445–59.CrossRefGoogle Scholar
  16. Ficken KJ, Li B, Swain DL, Eglinton G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–9.CrossRefGoogle Scholar
  17. García-Alix A, Jiménez Espejo FJ, Toney JL, Jiménez-Moreno G, Ramos-Román MJ, Anderson RS, Ruano P, Queralt I, Delgado Huertas A, Kuroda J. 2017. Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations. Sci Rep 7:7439.CrossRefPubMedPubMedCentralGoogle Scholar
  18. García-Alix A, Jiménez-Moreno G, Anderson RS, Jiménez-Espejo FJ, Delgado Huertas A. 2012. Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada. J Paleolimnol 48:471–84.CrossRefGoogle Scholar
  19. Giorgi F. 2006. Climate change hot-spots. Geophys Res Lett 33:1–4.CrossRefGoogle Scholar
  20. Grimm EC, Ed. 2004. Tilia and TG view version 2.0.2. Illinois State Museum, Research and Collection Center: Springfield (IL).Google Scholar
  21. Grunewald K, Scheithauer J. 2010. Europe’s southernmost glaciers: response and adaptation to climate change. J Glaciol 56:129–42.CrossRefGoogle Scholar
  22. Han J, Calvin M. 1969. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. Proc Natl Acad Sci 64:436–43.CrossRefPubMedGoogle Scholar
  23. Heiri O, Brooks SJ, Birks JB, Lotter AF. 2011. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat Sci Rev 30:3445–56.CrossRefGoogle Scholar
  24. Heiri O, Lotter AF. 2010. How does taxonomic resolution affect chironomid-based temperature reconstruction? J Paleolimnol 44:589–601.CrossRefGoogle Scholar
  25. Heiri O, Lotter AF, Hausmann S, Kienast F. 2003. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 4:477–84.CrossRefGoogle Scholar
  26. Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–10.CrossRefGoogle Scholar
  27. IPCC. 2013. Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. pp 3–17.Google Scholar
  28. Jiménez L, Romero-Viana L, Conde-Porcuna JM, Perez-Martinez C. 2015. Sedimentary photosynthetic pigments as indicators of climate and watershed perturbations in an alpine lake in southern Spain. Limnetica 34:439–54.Google Scholar
  29. Jiménez L, Rühland KM, Jeziorski A, Smol JP, Pérez-Martínez C. 2018. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Global Change Biol 24:e139–58.CrossRefGoogle Scholar
  30. Jiménez-Espejo FJ, García-Alix A, Jiménez-Moreno G, Rodrigo-Gámiz M, Anderson RS, Rodríguez-Tovar FJ, Martínez-Ruiz F, Giralt S, Delgado Huertas A, Pardo-Igúzquiza EP. 2014. Saharan aeolian input and effective humidity variations over western Europe during the Holocene from a high altitude record. Chem Geol 374–375:1–12.CrossRefGoogle Scholar
  31. Jiménez-Moreno G, Anderson RS. 2012. Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quat Res 77:44–53.CrossRefGoogle Scholar
  32. Jiménez-Moreno G, García-Alix A, Hernández-Corbalán MD, Anderson RS, Delgado-Huertas A. 2013. Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quat Res 79:110–22.CrossRefGoogle Scholar
  33. Juggins S. 2007. C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: Newcastle University.Google Scholar
  34. Juggins S. 2012. Rioja: analysis of quaternary science data. R package version 0.9-9. Retrieved from
  35. Laville H, Vílchez-Quero A. 1986. Les Chironomidés (Diptera) de quelques « lagunas » de haute altitude de la Sierra Nevada (Granada, Espagne). Ann Limnol Int J Limnol 22:53–63.CrossRefGoogle Scholar
  36. Lionello P. 2012. The climate of the Mediterranean region: from the past to the future. Amsterdam: Elsevier.Google Scholar
  37. Lotter AF, Birks HJB, Hofmann W, Marchetto A. 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–63.CrossRefGoogle Scholar
  38. Meyers PA, Teranes JL. 2001. Sediment organic matter. In: Last WM, Smol JP, Eds. Tracking environmental change using lake sediments. New York: Springer. p 239–69.Google Scholar
  39. Michelutti N, Smol JP. 2016. Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–65.CrossRefGoogle Scholar
  40. Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP. 2005. Recent primary production increases in arctic lakes. Geophys Res Lett 32:L19715.CrossRefGoogle Scholar
  41. Morales-Baquero R, Pulido-Villena E, Reche I. 2006. Atmospheric inputs of phosphorus and nitrogen to the southwest Mediterranean region: biogeochemical responses of high mountain lakes. Limnol Oceanogr 51:830–7.CrossRefGoogle Scholar
  42. Nogués-Bravo D, López-Moreno JI, Vicente-Serrano SM. 2012. Climate change and its impact. In: Vogiatzakis IN, Ed. Mediterranean mountain environments. Chichester: Wiley-Blackwell. p 185–201.CrossRefGoogle Scholar
  43. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2015. Vegan: community ecology package. R package version 2.4-0. Retrieved from
  44. Oliva M, Gómez-Ortiz A. 2012. Late Holocene environmental dynamics and climate variability in a Mediterranean high mountain environment (Sierra Nevada, Spain) inferred from lake sediments and historical sources. Holocene 22:915–27.CrossRefGoogle Scholar
  45. Oliva M, Gómez-Ortiz A, Salvador-Franch F, Salvà-Catarineu M, Palacios D, Tanarro L, Ramos M, Pereira P, Ruiz-Fernández J. 2016. Inexistence of permafrost at the top of the Veleta peak (Sierra Nevada, Spain). Sci Total Environ 550:484–94.CrossRefPubMedGoogle Scholar
  46. Oliva M, Ruiz-Fernández J, Barriendos M, Benito G, Cuadrat JM, Domínguez-Castro F, García-Ruiz JM, Giralt S, Gómez-Ortíz A, Hernández A, López-Costas O, López-Moreno JI, López-Sáez JA, Martínez-Cortizas A, Moreno A, Prohom M, Saz MA, Serrano E, Tejedor E, Trigo R, Valero-Garcés B, Vicente-Serrano SM. 2018. The little ice age in Iberian mountains. Earth Sci Rev 177:175–208.CrossRefGoogle Scholar
  47. Oliver DR, Roussel ME. 1983. Redescription of Brillia Kieffer (Diptera, Chironomidae) with descriptions of nearctic species. Can Entomol 115:257–79.CrossRefGoogle Scholar
  48. Palomo I, Martín-López B, Potschin M, Haines-Young R, Montes C. 2013. National Parks, buffer zones and surrounding lands: mapping ecosystem service flows. Ecosyst Serv 4:104–16.CrossRefGoogle Scholar
  49. Pauli H, Gottfried M, Grabherr G. 1996. Effects of climate change on mountain ecosystems—upward shifting of alpine plants. World Resour Rev 8:382–90.Google Scholar
  50. Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Calzado RF, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollár J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat JP, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G. 2012. Recent plant diversity changes on Europe’s mountain summits. Science 336:353–5.CrossRefPubMedGoogle Scholar
  51. Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ. 2015. Elevation-dependent warming in mountain regions of the world. Nat Climate Change 5:424–30.CrossRefGoogle Scholar
  52. Pérez-Luque AJ, Pérez-Pérez R, Bonet FJ. 2016. Climate change over the last 50 years in Sierra Nevada. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía. p 24–6.Google Scholar
  53. Pérez-Luque AJ, Sánchez-Rojas CP, Zamora R, Pérez-Pérez R, Bonet FJ. 2015. Dataset of phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain). PhytoKeys 46:89–107.CrossRefGoogle Scholar
  54. Pérez-Martínez C. 2016. Analysis of the palaeolimnological indicators in the lakes of Sierra Nevada. In: Zamora R, Pérez-Luque AJ, Bonet FJ, Barea-Azcón JM, Aspizua R, Eds. Global change impacts in Sierra Nevada: challenges for conservation. Sevilla: Consejería de Medio Ambiente y Ordenación del Territorio, Junta de Andalucía.Google Scholar
  55. Pérez-Martínez C, Jiménez L, Conde-Porcuna JM, Moreno E, Ramos-Rodríguez E, Heiri O, Jiménez-Moreno G, Anderson RS. 2012. Efectos del cambio climático en los ecosistemas acuáticos y terrestres de alta montaña de Sierra Nevada: Análisis del registro fósil en los sedimentos. In: Organismo Autónomo de Parques Naturales, Ed. Proyectos de Investigación en parque nacionales: 2008-2011. Madrid: Ministerio de Agricultura, Alimentación y Medio ambiente. p 71–93.Google Scholar
  56. Pérez-Palazón MJ, Pimentel R, Herrero J, Aguilar C, Perales JM, Polo MJ. 2015. Extreme values of snow-related variables in Mediterranean regions: trends and long-term forecasting in Sierra Nevada (Spain). Proc Int Assoc Hydrol Sci 369:157–62.Google Scholar
  57. Preston DL, Caine N, McKnight DM, Williams MW, Hell K, Miller MP, Hart SJ, Johnson PTJ. 2016. Climate regulates alpine lake ice cover phenology and aquatic ecosystem structure. Geophys Res Lett 43:5353–60.CrossRefGoogle Scholar
  58. Pulido-Villena E, Reche I, Morales-Baquero R. 2005. Food web reliance on allochthonous carbon in two high mountain lakes with contrasting catchments: a stable isotope approach. Can J Fish Aquat Sci 62:2640–8.CrossRefGoogle Scholar
  59. R Development Core Team. 2015. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  60. Real M, Rieradevall M, Prat N. 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshw Biol 43:1–18.CrossRefGoogle Scholar
  61. Rühland KM, Hargan KE, Jeziorski A, Paterson AM, Keller W, Smol JP. 2014. A multi-trophic exploratory survey of recent environmental changes using lake sediments in the Hudson Bay Lowlands, Ontario, Canada. Arct Antarct Alp Res 46:139–58.CrossRefGoogle Scholar
  62. Rühland KM, Paterson AM, Smol JP. 2015. Lake diatom responses to warming: reviewing the evidence. J Paleolimnol 54:1–135.CrossRefGoogle Scholar
  63. Ruiz-Sinoga JD, Garcia Marin R, Martinez Murillo F, Gabarron Galeote MA. 2011. Precipitation dynamics in southern Spain: trends and cycles. Int J Climatol 31:2281–9.CrossRefGoogle Scholar
  64. Smol JP. 2008. Pollution of lakes and rivers: a paleoenvironmental perspective. 2nd edn. Oxford: Willey-Blackwell publishing. p 396p.Google Scholar
  65. Sorvari S, Korhola A, Thompson R. 2002. Lake diatom response to recent Arctic warming in Finnish Lapland. Global Change Biol 8:171–81.CrossRefGoogle Scholar
  66. ter Braak CJF, Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269:485–502.CrossRefGoogle Scholar
  67. ter Braak CJF, Juggins S, Birks HJB, van der Voet H. 1993. Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species-environmental calibration. In: Patil GP, Rao CR, Eds. Multivariate environmental statistics. Amsterdam: Elsevier Science Publishers. p 525–60.Google Scholar
  68. Toms JD, Lesperance ML. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034–41.CrossRefGoogle Scholar
  69. Udelhoven T, Stellmes M, del Barrio G, Hill J. 2009. Assessment of rainfall and NDVI anomalies in Spain (1989–1999) using distributed lag models. Int J Remote Sens 30:1961–76.CrossRefGoogle Scholar
  70. Weckström K, Weckström J, Yliniemi L-M, Korhola A. 2010. The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. J Paleolimnol 43:61–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Water ResearchUniversity of GranadaGranadaSpain
  2. 2.Department of Ecology, Faculty of ScienceUniversity of GranadaGranadaSpain
  3. 3.Department of Stratigraphy and Paleontology, Faculty of ScienceUniversity of GranadaGranadaSpain
  4. 4.Andalusian Earth Sciences Institute (IACT-CSIC)Spanish National Research CouncilGranadaSpain
  5. 5.School of Geographical and Earth SciencesUniversity of GlasgowGlasgowUK
  6. 6.School of Earth Sciences and Environmental SustainabilityNorthern Arizona UniversityFlagstaffUSA
  7. 7.Institute of Plant Sciences and Oeschger Center for Climate Change ResearchUniversity of BernBernSwitzerland
  8. 8.Department of Environmental SciencesUniversity of BaselBaselSwitzerland

Personalised recommendations