Global Changes Jeopardize the Trophic Carrying Capacity and Functioning of Estuarine Ecosystems

Abstract

At the interface between terrestrial and marine biomes, estuaries display high ecological productivity and provide goods and services to humans. Associated with many ecological functions, they are nursery, refuge, and growing areas for many species fish. These ecological functions and services depend on both their ecological production and trophic carrying capacity and the durability of food web functioning. These transitional key habitats undergo both strong anthropogenic pressures and climatic influences that impact the structure and dynamics of estuarine biodiversity. In this context, we explore, here, three decades of the Gironde estuary ecosystem history to detect the food web’s response to global changes-induced effect on biodiversity. At least two Ecological Abrupt Shifts associated with deep modifications in the biodiversity at most trophic levels have been documented for this particular ecosystem. Three food web models were thus calibrated, one for each of the three periods discriminated by the two shifts that occurred at the end of the 1980s and the beginning of the 2000s. Results highlighted that the ecotrophic efficiency estimate for subtidal macrofauna and shrimps reached the maximum possible values during the last period. This could mean that the Gironde estuary fully reached its trophic carrying capacity due to a food limitation especially for benthos demersal fish. We also observed a significant decrease in some food web indicators (such as Average Mutual Information, System Omnivory Index, and Average Path Length) usually associated with ecosystem stress, suggesting a significant impact of global change on the Gironde estuary ecosystem health and questioning the sustainability of the ecological functions associated with this ecosystem.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Abarca-Arenas LG, Ulanowicz RE. 2002. The effects of taxonomic aggregation on network analysis. Ecol Model 149:285–96.

    Article  Google Scholar 

  2. Able KW. 2005. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar, Coastal Shelf Sci 64:5–17.

    Article  Google Scholar 

  3. Ainsworth C, Feriss B, Leblond E, Guénette S. 2001. The Bay of Biscay, France: 1998 and 1970 models. Fish. Cent. Res. Rep. 9:271–313.

    Google Scholar 

  4. Allen GP. 1972. Etude des processus sédimentaires dans l’estuaire de la Gironde. Sciences Naturelles. Bordeaux: Université de Bordeaux I, p. 314.

  5. Allen GP, Salomon JC, Bassoullet P, Du Penhoat Y, de Grandpré C. 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment. Geol. 26:69–90.

    Article  Google Scholar 

  6. Araújo JN, Mackinson S, Stanford RJ, Sims DW, Southward AJ, Hawkins SJ, Ellis JR, Hart PJB. 2006. Modelling food web interactions, variation in plankton production, and fisheries in the western English Channel ecosystem. Mar Ecol Prog Ser 309:175–87.

    Article  Google Scholar 

  7. Bachelet G, Leconte M. 2015. Macrofaune benthique. Surveillance écologique du site du Blayais, année 2014: Rapp. IFREMER RST ODE/DYNECO/AG/15-01, pp. 199–228.

  8. Baeta A, Niquil N, Marques JC, Patricio J. 2011. Modelling the effects of eutrophication, mitigation measures and an extreme flood event on estuarine benthic food webs. Ecol Model 222:1209–21.

    Article  Google Scholar 

  9. Baird D. 2009. An assessment of the functional variability of selected coastal ecosystems in the context of local environmental changes. ICES J Mar Sci 66:1520–7.

    Article  Google Scholar 

  10. Baird D, Asmus H, Asmus R. 2004a. Energy flow of a boreal intertidal ecosystem, the Sylt-Rømø Bight. Mar Ecol Prog Ser 279:45–61.

    Article  Google Scholar 

  11. Baird D, Asmus H, Asmus R. 2012. Effect of invasive species on the structure and function of the Sylt-Rømø Bight ecosystem, northern Wadden Sea, over three time periods. Mar Ecol Prog Ser 462:143–61.

    Article  Google Scholar 

  12. Baird D, Christian RR, Peterson CH, Johnson GA. 2004b. Consequences of hypoxia on estuarine ecosystem function: energy diversion from consumers to microbes. Ecol Appl 14:805–22.

    Article  Google Scholar 

  13. Baird D, Luczkovich J, Christian RR. 1998. Assessment of Spatial and Temporal Variability in Ecosystem Attributes of the St Marks National Wildlife Refuge, Apalachee Bay, Florida. Estuar, Coastal Shelf Sci 47:329–49.

    Article  Google Scholar 

  14. Baird D, McGlade JM, Ulanowicz RE. 1991. The Comparative Ecology of 6 Marine Ecosystems. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 333:15–29.

    Article  Google Scholar 

  15. Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MR. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51:633–41.

    Article  Google Scholar 

  16. Béguer M. 2009. Réponses d’une population aux forçages environnementaux et anthropiques: le suivi à long terme de la crevette Palaemon longirostris de l’estuaire de la Gironde (1979–2007). Université de Bordeaux.

  17. Béguer M, Bergé J, Martin J, Martinet J, Pauliac G, Girardin M, Boët P. 2011. Presence of Palaemon macrodactylus in a European estuary: Evidence for a successful invasion of the Gironde (SW France). Aquat Invasions 6:301–18.

    Article  Google Scholar 

  18. Boigontier B, Mounié D. 1984. Contribution à la connaissance de la dynamique de la macrofaune bentho-démersale et pélagique en Gironde. Tentatives et difficultés pour relativiser l’impact mécanique d’une centrale nucléaire: le Blayais (Gironde). Sciences et Techniques en Production Animale option Ichtyologie Appliquée. Toulouse: ENSAT, p. 491.

  19. Brey T. 1990. Estimating productivity of macrobenthic invertebrates from biomass and mean individual weight. MEERESFORSCHUNG/REP. MAR. RES. 32:329–43.

    Google Scholar 

  20. Brook BW, Sodhi NS, Bradshaw CJA. 2008. Synergies among extinction drivers under global change. Trends in Ecol Evol 23:453–60.

    Article  Google Scholar 

  21. Brosse L. 2003. Caractérisation des habitats des juvéniles d’esturgeon européen, Acipenser sturio, dans l’estuaire de la Gironde: relation trophiques, hiérarchisation et vulnérabilité des habitats.

  22. Budzinski H, Jones I, Piérard C, Bellocq J, Garrigues P. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97.

    Article  CAS  Google Scholar 

  23. Byron C, Link J, Costa-Pierce B, Bengtson D. 2011. Modeling ecological carrying capacity of shellfish aquaculture in highly flushed temperate lagoons. Aquaculture 314:87–99.

    Article  Google Scholar 

  24. Chaalali A, Beaugrand G, Boët P, Sautour B. 2013a. Climate-Caused Abrupt Shifts in a European Macrotidal Estuary. Estuar Coast 36:1193–205.

    Article  CAS  Google Scholar 

  25. Chaalali A, Chevillot X, Beaugrand G, David V, Boët P, Sautour B. 2013b. Changes in the distribution of copepods in the Gironde estuary: a warming and marinisation consequence? Estuar Coastal Shelf Sci 134:150–61.

    Article  CAS  Google Scholar 

  26. Chevillot X, Drouineau H, Lambert P, Carassou L, Sautour B, Lobry J. 2017. Toward a phenological mismatch in estuarine pelagic food web? PLoS ONE 12:e0173752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chevillot X, Pierre M, Rigaud A, Drouineau H, Chaalali A, Sautour B, Lobry J. 2016. Abrupt shifts in the Gironde fish community: an indicator of ecological changes in an estuarine ecosystem. Mar Ecol Prog Ser 549:137–51.

    Article  CAS  Google Scholar 

  28. Christensen V, Pauly D. 1992. ECOPATH II - a software for balancing steady-state ecosystem models and calculating network characteristics. Ecol Model 61:169–85.

    Article  Google Scholar 

  29. Christensen V, Pauly D, Eds. 1993. Trophic models of aquatic ecosystems. Manilla, Philippines: ICLARM.

    Google Scholar 

  30. Christensen V, Walters C, Pauly D, Forrest R. 2008. Ecopath with Ecosim version 6 user guide. Lenfest Ocean Futures Project: 235.

  31. Christensen V, Walters CJ, Pauly D. 2005. Ecopath with Ecosim: a User’s Guide. Vancouver: Fisheries Centre, University of British Columbia.

    Google Scholar 

  32. Cliff N. 1996. Answering ordinal questions with ordinal data using ordinal statistics. Multivariate Behavioral Research 31:331–50.

    Article  CAS  PubMed  Google Scholar 

  33. Colleter M, Valls A, Guitton J, Gascuel D, Pauly D, Christensen V. 2015. Global overview of the applications of the Ecopath with Ecosim modeling approach using the EcoBase models repository. Ecol Model 302:42–53.

    Article  Google Scholar 

  34. Costanza R, D’Arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253–60.

    Article  CAS  Google Scholar 

  35. Dauvin J-C. 2007. Paradox of estuarine quality: Benthic indicators and indices, consensus or debate for the future. Mar Pollut Bull 55:271–81.

    Article  CAS  PubMed  Google Scholar 

  36. David V. 2006. Variabilité spatio-temporelle du zooplancton dans l’estuaire de la Gironde et implications au sein du réseau trophique planctonique. Bordeaux: Université de Bordeaux I.

    Google Scholar 

  37. David V, Chardy P, Sautour B. 2006. Fitting a predator-prey model to zooplankton time-series data in the Gironde estuary (France): Ecological significance of the parameters. Estuar, Coastal Shelf Sci 67:605–17.

    Article  Google Scholar 

  38. David V, Sautour B, Chardy P. 2007. Successful colonization of the calanoid copepod Acartia tonsa in the oligo-mesohaline area of the Gironde estuary (SW France) - Natural or anthropogenic forcing? Estuar, Coastal Shelf Sci 71:429–42.

    Article  Google Scholar 

  39. David V, Sautour B, Chardy P, Leconte M. 2005. Long-term changes of the zooplankton variability in a turbid environment: the Gironde estuary (France). Estuar, Coastal Shelf Sci 64:171–84.

    Article  Google Scholar 

  40. de Jonge VN, Elliott M, Brauer VS. 2006. Marine monitoring: Its shortcomings and mismatch with the EU water framework directive’s objectives. Mar Pollut Bull 53:5–19.

    Article  CAS  PubMed  Google Scholar 

  41. deYoung B, Barange M, Beaugrand G, Harris R, Perry RI, Scheffer M, Werner F. 2008. Regime shifts in marine ecosystems: detection, prediction and management. Trends in Ecol Evol 23:402–9.

    Article  Google Scholar 

  42. Diaz MV, Pájaro M, Olivar MP, Martos P, Macchi GJ. 2011. Nutritional condition of Argentine anchovy Engraulis anchoita larvae in connection with nursery ground properties. Fish Res 109:330–41.

    Article  Google Scholar 

  43. Elliott M, Quintino V. 2007. The Estuarine Quality Paradox, Environmental Homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54:640–5.

    Article  CAS  PubMed  Google Scholar 

  44. Finn JT. 1980. Flow analysis of models of the Hubbard Brook ecosystem. Ecology 61:562–71.

    Article  Google Scholar 

  45. Folke C, Hahn T, Olsson P, Norberg J. 2005. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. Palo Alto: Annual Reviews, pp. 441–473.

  46. Fox D. 2007. Back to the no-analog future. Science 319:823–5.

    Article  Google Scholar 

  47. Frelat R, Orio A, Casini M, Lehmann A, Mérigot B, Otto SA, Sguotti C, Möllmann C, Handling editor: Marta C. 2018. A three-dimensional view on biodiversity changes: spatial, temporal, and functional perspectives on fish communities in the Baltic Sea. ICES J Mar Sci: fsy027–fsy027.

  48. Fulford R, Peterson MS, Grammer P. 2011. An ecological model of the habitat mosaic in estuarine nursery areas: Part I—Interaction of dispersal theory and habitat variability in describing juvenile fish distributions. Ecol model 222:3203–15.

    Article  Google Scholar 

  49. Guesnet V, Lassalle G, Chaalali A, Kearney K, Saint-Béat B, Karimi B, Grami B, Tecchio S, Niquil N, Lobry J. 2015. Incorporating food-web parameter uncertainty into Ecopath-derived ecological network indicators. Ecol Model 313:29–40.

    Article  Google Scholar 

  50. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, Heiskanen AS, Johnson RK, Moe J, Pont D, Solheim AL, Van De Bund W. 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci Total Environ 408:4007–19.

    Article  CAS  PubMed  Google Scholar 

  51. Heymans J, Baird D. 2000. A carbon flow model and network analysis of the northern Benguela upwelling system, Namibia. Ecol Model 126:9–32.

    Article  CAS  Google Scholar 

  52. Heymans JJ, Coll M, Link JS, Mackinson S, Steenbeek J, Walters C, Christensen V. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Model 331:173–84

    Article  Google Scholar 

  53. Hillebrand H, Matthiessen B. 2009. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecol Let 12:1405–19.

    Article  Google Scholar 

  54. Hodgson JA, Moilanen A, Wintle BA, Thomas CD. 2011. Habitat area, quality and connectivity: Striking the balance for efficient conservation. J Appl Ecol 48:148–52.

    Article  Google Scholar 

  55. Irigoien X, Castel J. 1997. Light limitation and distribution of chlorophyll pigments in a highly turbid estuary: The Gironde (SW France). Estuar, Coastal Shelf Sci 44:507–17.

    Article  CAS  Google Scholar 

  56. Jiang W, Gibbs MT. 2005. Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model. Aquaculture 244:171–85.

    Article  Google Scholar 

  57. Johnson GA, Niquil N, Asmus H, Bacher C, Asmus R, Baird D. 2009. The effects of aggregation on the performance of the inverse method and indicators of network analysis. Ecol Model 220:3448–64.

    Article  Google Scholar 

  58. Jorgensen SE, Nielsen SN, Jorgensen LA, Eds. 1991. Handbook of ecological parameters and ecotoxicology. Elsevier, Amsterdam, New York

  59. Jouanneau JM, Latouche C. 1981. The Gironde Estuary.

  60. Kay JJ, Graham LA, Ulanowicz RE. 1989. A detailed guide to network analysis. Network Analysis in Marine Ecology: Springer, pp. 15–61.

  61. Mathews CP. 1971. Contribution of young fish to total production of fish in the River Thames near Reading. J Fish Biol 3:157–80.

    Article  Google Scholar 

  62. Laegdsgaard P, Johnson C. 2001. Why do juvenile fish utilise mangrove habitats? J mar biol ecol 257:229–53.

    Article  CAS  Google Scholar 

  63. Le Pape O, Bonhommeau S. 2015. The food limitation hypothesis for juvenile marine fish. Fish and Fisheries 16:373–98.

    Article  Google Scholar 

  64. Leakey R, Lewin R. 1996. The sixth extinction. London: Weidenfield & Nicolson.

    Google Scholar 

  65. Lemaire E, Abril G, De Wit R, Etcheber H. 2002. Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology. Biogeochemistry 59:5–23.

    Article  CAS  Google Scholar 

  66. Libralato S. 2008. System Omnivory Index. Jorgensen SE, Fath B editors. Encyclopedia of Ecology. Oxford: Academic Press, pp. 3472–3477.

  67. Libralato S, Christensen V, Pauly D. 2006. A method for identifying keystone species in food web models. Ecol Model 195:153–71.

    Article  Google Scholar 

  68. Link JS. 2010. Adding rigor to ecological network models by evaluating a set of pre-balance diagnostics: A plea for PREBAL. Ecol Model 221:1580–91.

    Article  Google Scholar 

  69. Lobry J, Castelnaud G. 2015. Surveillance halieutique de l’estuaire de la Gironde - Suivi des captures 2014 - Etude de la fuane circulante 2014. Cestas: Irstea, Centre de Bordeaux. p p236.

    Google Scholar 

  70. Lobry J, David V, Pasquaud S, Lepage M, Sautour B, Rochard E. 2008. Diversity and stability of an estuarine trophic network. Mar Ecol Prog Ser 358:13–25.

    Article  Google Scholar 

  71. Lobry J, Désaunay Y, Beucher H. 2006. Anthropogenic impacts on coastal resources: characteristics and evolution of the coastal fisheries of the Bay of Biscay. Alvarez I, deCastro M, Gomez-Gesteira M, Lorenzo MN, Prego R editors. X International Symposium on Oceanography of the Bay of Biscay. Vigo, Galicia, Spain, pp. 345–348.

  72. Loreau M, Naeem S, Inchausti P, Eds. 2002. Biodiversity and ecosystem functioning: synthesis and perspectives. New York: Oxford University Press.

    Google Scholar 

  73. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA. 2001. Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–8.

    Article  CAS  PubMed  Google Scholar 

  74. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. 2006. Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science 312:1806.

    Article  CAS  PubMed  Google Scholar 

  75. Mann KH, Field JG, Wulff F. 1989. Network analysis in marine ecology: an assessment: Springer.

  76. McCann K, Hastings A. 1997. Re–evaluating the omnivory–stability relationship in food webs. Proceedings of the Royal Society of London B: Biological Sciences 264:1249–54.

    Article  Google Scholar 

  77. McCann KS. 2000. The diversity-stability debate. Nature 405:228–33.

    Article  CAS  PubMed  Google Scholar 

  78. McLusky D, Elliott M. 1981. The feeding and survival strategies of estuarine molluscs. Feeding and Survival Srategies of Estuarine Organisms: Springer, pp. 109–121.

  79. McLusky DS, Elliott M. 2004. The Estuarine Ecosystem: Ecology, Threats and Management. Oxford: OUP. p 224p.

    Google Scholar 

  80. Morissette L. 2007. Complexity, cost and quality of ecosystem models and their impact on resilience.: Citeseer.

  81. Nash R, Geffen A. 2000. The influence of nursery ground processes in the determination of year-class strength in juvenile plaice Pleuronectes platessa L. in Port Erin Bay, Irish Sea. J Sea Res 44:101–10.

    Article  Google Scholar 

  82. Nash RD, Geffen AJ, Burrows MT, Gibson RN. 2007. Dynamics of shallow-water juvenile flatfish nursery grounds: application of the self-thinning rule. Mar Ecol Prog Ser 344:231–44.

    Article  Google Scholar 

  83. Nicolas D, Lobry J, Boët P. 2010. Fish under influence? A large-scale functional analysis of relations between abiotic gradients and fish assemblages of European tidal estuaries. ECSA 47 symposium, 14/09/2010 - 19/09/2010. Figueira da Foz, PRT, p. 1.

  84. Niquil N, Chaumillon E, Johnson GA, Bertin X, Grami B, David V, Bacher C, Asmus H, Baird D, Asmus R. 2012. The effect of physical drivers on ecosystem indices derived from ecological network analysis: Comparison across estuarine ecosystems. Estuar Coastal Shelf Sci 108:132–43.

    Article  Google Scholar 

  85. Nunn A, Tewson L, Cowx I. 2012. The foraging ecology of larval and juvenile fishes. Rev Fish Biol Fish 22:377–408.

    Article  Google Scholar 

  86. Nzigou AR. 2012. Production primaire et fonctionnement écologique en milieu estuarien turbide, cas de l’estuaire de la Gironde (France) Océanographie: L’UNIVERSITÉ BORDEAUX I, p. 181.

  87. Odum EP. 1969. The strategy of ecosystem development. Science 164:262–70.

    Article  CAS  PubMed  Google Scholar 

  88. Odum EP. 1985. Trends expected in stressed ecosystems. Bioscience 35:419–22.

    Article  Google Scholar 

  89. Odum EP, Odum HT, Andrews J. 1971. Fundamentals of ecology: Saunders Philadelphia.

  90. Palomares MLD, Pauly D. 1999. Predicting the food consumption of fish populations as functions of mortality, food type, morphometrics, temperature and salinity. Mar Freshw Res 49:447–53.

    Article  Google Scholar 

  91. Pasquaud S, Béguer M, Larsen MH, Chaalali A, Cabral H, Lobry J. 2012. Increase of marine juvenile fish abundances in the middle Gironde estuary related to warmer and more saline waters, due to global changes. Estuar Coastal Shelf Sci 104–105:46–53.

    Article  CAS  Google Scholar 

  92. Pasquaud S, David V, Lobry J, Girardin M, Sautour B, Elie P. 2010a. Exploitation of trophic resources by fish under stressful estuarine conditions. Mar Ecol Prog Ser 400:207–19.

    Article  Google Scholar 

  93. Pasquaud S, Elie P, Jeantet C, Billy I, Martinez P, Girardin M. 2008. A preliminary investigation of the fish food web in the Gironde estuary, France, using dietary and stable isotope analyses. Estuar Coastal Shelf Sci 78:267–79.

    Article  Google Scholar 

  94. Pasquaud S, Pillet M, David V, Sautour B, Elie P. 2010b. Determination of fish trophic levels in an estuarine system. Estuar, Coastal Shelf Sci 86:237–46.

    Article  CAS  Google Scholar 

  95. Patrício J, Marques JC. 2006. Mass balanced models of the food web in three areas along a gradient of eutrophication symptoms in the south arm of the Mondego estuary (Portugal). Ecol Model 197:21–34.

    Article  Google Scholar 

  96. Patricio J, Ulanowicz R, Pardal MA, Marques JC. 2004. Ascendency as an ecological indicator: a case study of estuarine pulse eutrophication. Estuar Coastal Shelf Sci 60:23–35.

    Article  Google Scholar 

  97. Peuchet L, Lindegren M, Hidalgo M, Delgado M, Esteban A, Fock HO, Gil de Sola L, Punzón A, Sólmundsson J, Payne MR. 2017. From traits to life-history strategies: Deconstructing fish community composition across European seas. Global Ecology and Biogeography 26:812–22.

    Article  Google Scholar 

  98. Polovina JJ. 1984. Model of a coral reef ecosystem. The Ecopath model and its application to French Frigate Shoals. Coral Reefs 3:1–11.

    Article  Google Scholar 

  99. Pronier O, Rochard E. 1998. Fonctionnement d’une population d’éperlan (Osmerus eperlanus, Osmériformes Osmeridae) située en limite méridionale de son aire de répartition, influence de la température. Bulletin Français de la Pêche et de la Pisciculture 350–51:479–97.

    Article  Google Scholar 

  100. Rochette S, Rivot E, Morin J, Mackinson S, Riou P, Le Pape O. 2010. Effect of nursery habitat degradation on flatfish population: Application to Solea solea in the Eastern Channel (Western Europe). J Sea Res 64:34–44.

    Article  Google Scholar 

  101. Rombouts I, Beaugrand G, Fizzala X, Gaill F, Greenstreet SPR, Lamare S, Le Loc’h F, McQuatters-Gollop A, Mialet B, Niquil N, Percelay J, Renaud F, Rossberg AG, Féral JP. 2013. Food web indicators under the Marine Strategy Framework Directive: From complexity to simplicity? Ecol Indic 29:246–54.

    Article  Google Scholar 

  102. Rooney N, McCann KS. 2012. Integrating food web diversity, structure and stability. Trends in Ecol Evol 27:40–6.

    Article  Google Scholar 

  103. Rougier T, Lambert P, Drouineau H, Girardin M, Castelnaud G, Carry L, Aprahamian M, Rivot E, Rochard E. 2012. Collapse of allis shad, Alosa alosa, in the Gironde system (southwest France): Environmental change, fishing mortality, or Allee effect? ICES J Mar Sci 69:1802–11.

    Article  Google Scholar 

  104. Rybarczyk H, Elkaim B, Ochs L, Loquet N. 2003. Analysis of the trophic network of a macrotidal ecosystem: the Bay of Somme (Eastern Channel). Estuar Coastal Shelf Sci 58:405–21.

    Article  CAS  Google Scholar 

  105. Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR, Johnson GA, David V, Vézina AF, Niquil N. 2015. Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecol Indic 52:458–71.

    Article  Google Scholar 

  106. Savoye N, David V, Morisseau F, Etcheber H, Abril G, Billy I, Charlier K, Oggian G, Derriennic H, Sautour B. 2012. Origin and composition of particulate organic matter in a macrotidal turbid estuary: The Gironde Estuary, France. Estuar Coastal Shelf Sci 108:16–28.

    Article  CAS  Google Scholar 

  107. Schäfer J, Blanc G, Lapaquellerie Y, Maillet N, Maneux E, Etcheber H. 2002. Ten-year observation of the Gironde tributary fluvial system: Fluxes of suspended matter, particulate organic carbon and cadmium. Mar Chem 79:229–42.

    Article  Google Scholar 

  108. Scharler U. 2012. Ecosystem development during open and closed phases of temporarily open/closed estuaries on the subtropical east coast of South Africa. Estuar Coastal Shelf Sci 108:119–31.

    Article  Google Scholar 

  109. Scharler UM, Baird D. 2005. A comparison of selected ecosystem attributes of three South African estuaries with different freshwater inflow regimes, using network analysis. J Mar Syst 56:283–308.

    Article  Google Scholar 

  110. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  PubMed  Google Scholar 

  111. Schückel U, Kröncke I, Baird D. 2015. Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis. Mar Ecol Prog Ser 536:25–38.

    Article  Google Scholar 

  112. Selleslagh J, Blanchet H, Bachelet G, Lobry J. 2015. Feeding Habitats, Connectivity and Origin of Organic Matter Supporting Fish Populations in an Estuary with a Reduced Intertidal Area Assessed by Stable Isotope Analysis. Estuar Coasts 38:1431–47.

    Article  CAS  Google Scholar 

  113. Selleslagh J, Lobry J, Amara R, Brylinski J-M, Boët P. 2012a. Trophic functioning of estuarine ecosystems along a gradient of anthropogenic pressures: a French case study with emphasis on a small and low impacted estuary. Estuar Coastal Shelf Sci 112:73–85.

    Article  Google Scholar 

  114. Selleslagh J, Lobry J, N’Zigou AR, Bachelet G, Blanchet H, Chaalali A, Sautour B, Boët P. 2012b. Seasonal succession of estuarine fish, shrimps, macrozoobenthos and plankton: Physico-chemical and trophic influence. The Gironde estuary as a case study. Estuar Coastal Shelf Sci 112:243–54.

    Article  CAS  Google Scholar 

  115. Sheaves M. 2009. Consequences of ecological connectivity: the coastal ecosystem mosaic. Mar Ecol Prog Ser 391:107–15.

    Article  Google Scholar 

  116. Sogard SM. 1992. Variability in growth rates of juvenile fishes in different estuarine habitats. Mar Ecol Prog Ser. Oldendorf 85:35–53.

    Article  Google Scholar 

  117. Sottolichio A, Castaing P. 1999. A synthesis on seasonal dynamics of highly-concentrated structures in the Gironde estuary. C. R. Acad. Sci. Ser. IIa Sci. Terre Planetes 329:795–800.

    Google Scholar 

  118. Sottolichio A, Castaing P, Etcheber H, Maneux E, Schmeltz M, Schmidt S. 2011. Observations of suspended sediment dynamics in a highly turbid macrotidal estuary, derived from continuous monitoring. J Coastal Res 64:1579–83.

    Google Scholar 

  119. Sueur F, Triplet P. 1999. Les oiseaux de la baie de Somme. SMACOPI, GOP, Conservatoire du Littoral, RNBS.

  120. Tableau A, Brind’Amour A, Woillez M, Le Bris H. 2015. Influence of food availability on the spatial distribution of juvenile fish within soft sediment nursery habitats. J Sea Res 111:76–87.

    Article  Google Scholar 

  121. Taverny. 1991. Contribution à la connaissance de la dynamique des populations d’Aloses (Alosa fallax Lacépède) dans le système fluvio-estuarien de la Gironde: pêche,biologie et écologie. Etude particulière de la dévalaison et de l’impact des activités humaines. Bordeaux: Université de Bordeaux I, p. 568.

  122. Tecchio S, Chaalali A, Raoux A, Tous Rius A, Lequesne J, Girardin V, Lassalle G, Cachera M, Riou P, Lobry J, Dauvin J-C, Niquil N. 2016. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: The case of the Seine estuary. Ecol Indic 61(Part 2):833–45.

    Article  Google Scholar 

  123. Tecchio S, Rius AT, Dauvin JC, Lobry J, Lassalle G, Morin J, Bacq N, Cachera M, Chaalali A, Villanueva MC, Niquil N. 2015. The mosaic of habitats of the Seine estuary: Insights from food-web modelling and network analysis. Ecol Model 312:91–101.

    Article  Google Scholar 

  124. Thompson RM, Brose U, Dunne JA, Hall RO, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB, Tylianakis JM. 2012. Food webs: reconciling the structure and function of biodiversity. Trends in Ecol Evol 27:689–97.

    Article  Google Scholar 

  125. Tomczak MT, Heymans JJ, Yletyinen J, Niiranen S, Otto SA, Blenckner T. 2013. Ecological Network Indicators of Ecosystem Status and Change in the Baltic Sea. PLoS One 8:e75439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ulanowicz RE. 1986. Growth and Development: Ecosystems Phenomenology. New York: Springer-Verlag.

    Google Scholar 

  127. Ulanowicz RE. 2004. Quantitative methods for ecological network analysis. Computational Biology and Chemistry 28:321–39.

    Article  CAS  PubMed  Google Scholar 

  128. Ulanowicz RE. 2009. The dual nature of ecosystem dynamics. Ecol model 220:1886–92.

    Article  Google Scholar 

  129. Ulanowicz RE, Abarca-Arenas LG. 1997. An informational synthesis of ecosystem structure and function. Ecol Model 95:1–10.

    Article  Google Scholar 

  130. Ulanowicz RE, Wulff F. 1991. Comparing ecosystem structures: the Chesapeake Bay and the Baltic Sea. Comparative Analyses of Ecosystems: Springer, pp. 140-166.

  131. van der Veer HW. 1993. The ‘maximum growth/optimal food condition’hypothesis: a test for 0-group plaice Pleuronectes platessa in the Dutch Wadden Sea. Mar Ecol Prog Ser 101:81–90.

    Article  Google Scholar 

  132. van der Veer HW, Berghahn R, Miller JM, Rijnsdorp AD. 2000. Recruitment in flatfish, with special emphasis on North Atlantic species: Progress made by the Flatfish Symposia. Ices J Marine Science 57:202–15.

    Article  Google Scholar 

  133. Villasante S, Arreguín-Sánchez F, Heymans JJ, Libralato S, Piroddi C, Christensen V, Coll M. 2016. Modelling marine ecosystems using the Ecopath with Ecosim food web approach: New insights to address complex dynamics after 30 years of developments. Ecol Model 331:1–4.

    Article  Google Scholar 

  134. Vinagre C, Salgado J, Costa MJ, Cabral HN. 2008. Nursery fidelity, food web interactions and primary sources of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable isotope approach. Estuar Coastal Shelf Sci 76:255–64.

    Article  Google Scholar 

  135. Wennhage H, Gibson R. 1998. Influence of food supply and a potential predator (Crangon crangon) on settling behaviour of plaice (Pleuronectes platessa). J Sea Res 39:103–12.

    Article  Google Scholar 

  136. Winemiller KO. 1995. Aspects structurels et fonctionnels de la biodiversité des peuplements de poissons. Bulletin Francais de la Peche et de la Pisciculture 337(338/339):23–45.

    Article  Google Scholar 

  137. Wulff F, Field JG, Mann KH. 1989. Network analysis in marine ecology-Methods and applications-Coastal and estuarine studies formerly lecture notes on coastal and estuarine studies: Springer-Verlag.

Download references

Acknowledgements

Particular thanks are due to Hugues Blanchet, Raphael Musseau, and the ‘Biosphère environnement’ team for their benthos and bird data and highly relevant comments. We thank all TRANSECT, STURAT, SOMLIT, and Blayais team members, technicians, researchers, captains, and crews, who have contributed to samplings since 1979. Data since 1997 can be downloaded at: http://somlit.epoc.u-bordeaux1.fr/fr. These programmes were supported by Electricité de France (EDF), Irstea, Ifremer, and the CNRS.

Funding

This work was supported by the French Ministry in charge of Environment and the Regional Council of Aquitaine (CPER programme) as a part of the LITEAU-TRAJEST Project. This study has been partly carried out with financial support from the French National Research Agency (ANR) in the frame of the Investments for the future Programme, within the Cluster of Excellence COTE (ANR-10-LABX-45).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xavier Chevillot.

Additional information

Authors’ contributions

XC, JL, GB, BS, and NN conceived of or designed the study; XC, JL, ST, AC, and NN performed the research; XC, JL, ST, AC, GC, GB, and NN analysed the data; XC, JL, ST, AC, GL, and NN contributed new methods or models; XC, ST, AC, JS, GL, GB, NN, BS, and JL wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chevillot, X., Tecchio, S., Chaalali, A. et al. Global Changes Jeopardize the Trophic Carrying Capacity and Functioning of Estuarine Ecosystems. Ecosystems 22, 473–495 (2019). https://doi.org/10.1007/s10021-018-0282-9

Download citation

Keywords

  • trophic carrying capacity
  • global changes
  • food web functioning
  • ecopath
  • estuary
  • ecological abrupt shifts
  • ecological network analysis
  • ENAtool
  • gironde estuary