Skip to main content

Climatic Sensitivity of Dryland Soil CO2 Fluxes Differs Dramatically with Biological Soil Crust Successional State

Abstract

Arid and semiarid ecosystems make up approximately 41% of Earth’s terrestrial surface and are suggested to regulate the trend and interannual variability of the global terrestrial carbon (C) sink. Biological soil crusts (biocrusts) are common dryland soil surface communities of bryophytes, lichens, and/or cyanobacteria that bind the soil surface together and that may play an important role in regulating the climatic sensitivity of the dryland C cycle. Major uncertainties exist in our understanding of the interacting effects of changing temperature and moisture on CO2 uptake (photosynthesis) and loss (respiration) from biocrust and sub-crust soil, particularly as related to biocrust successional state. Here, we used a mesocosm approach to assess how biocrust successional states related to climate treatments. We subjected bare soil (Bare), early successional lightly pigmented cyanobacterial biocrust (Early), and late successional darkly pigmented moss-lichen biocrust (Late) to either ambient or + 5°C above ambient soil temperature for 84 days. Under ambient temperatures, Late biocrust mesocosms showed frequent net uptake of CO2, whereas Bare soil, Early biocrust, and warmed Late biocrust mesocosms mostly lost CO2 to the atmosphere. The inhibiting effect of warming on CO2 exchange was a result of accelerated drying of biocrust and soil. We used these data to parameterize, via Bayesian methods, a model of ecosystem CO2 fluxes, and evaluated the model with data from an autochamber CO2 system at our field site on the Colorado Plateau in SE Utah. In the context of the field experiment, the data underscore the negative effect of warming on fluxes both biocrust CO2 uptake and loss—which, because biocrusts are a dominant land cover type in this ecosystem, may extend to ecosystem-scale C cycling.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  • Ahlström A, Raupach MR, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell JG, Friedlingstein P, Jain AK, Kato E, Poulter B, Sitch S, Stocker BD, Viovy N, Wang YP, Wiltshire A, Zaehle S, Zeng N. 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–9.

    Article  CAS  Google Scholar 

  • Atkin OK, Tjoelker MG. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in plant science 8:343–51.

    Article  CAS  PubMed  Google Scholar 

  • Austin A, Yahdjian L, Stark J, Belnap J, Porporato A, Norton U, Ravetta D, Schaeffer S. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–35.

    Article  PubMed  Google Scholar 

  • Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. 2016. Patterns and controls on nitrogen cycling of biological soil crusts. Biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 257–85.

    Book  Google Scholar 

  • Belnap J. 1995. Surface disturbances: their role in accelerating desertification. Desertification in developed countries. Berlin: Springer. pp 39–57.

    Book  Google Scholar 

  • Belnap J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–35.

    Article  CAS  Google Scholar 

  • Belnap J, Phillips SL, Miller ME. 2004. Response of desert biological soil crusts to alterations in precipitation frequency. Oecologia 141:306–16.

    Article  PubMed  Google Scholar 

  • Belnap J, Weber B, Büdel B. 2016. Biological soil crusts as an organizing principle in drylands. Biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 3–13.

    Book  Google Scholar 

  • Bowker MA, Belnap J, Büdel B, Sannier C, Pietrasiak N, Eldridge DJ, Rivera-Aguilar V. 2016. Controls on distribution patterns of biological soil crusts at micro-to global scales. Biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 173–97.

    Book  Google Scholar 

  • Bowker MA, Maestre FT, Eldridge D, Belnap J, Castillo-Monroy A, Escolar C, Soliveres S. 2014. Biological soil crusts (biocrusts) as a model system in community, landscape and ecosystem ecology. Biodivers Conserv 23:1619–37.

    Article  Google Scholar 

  • Bowker MA, Mau RL, Maestre FT, Escolar C, Castillo-Monroy AP. 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Funct Ecol 25:787–95.

    Article  Google Scholar 

  • Burgheimer J, Wilske B, Maseyk K, Karnieli A, Zaady E, Yakir D, Kesselmeier J. 2006. Relationships between normalized difference vegetation index (NDVI) and carbon fluxes of biologic soil crusts assessed by ground measurements. J Arid Environ 64:651–69.

    Article  Google Scholar 

  • Castillo-Monroy AP, Bowker MA, Maestre FT, Rodriguez-Echeverria S, Martinez I, Barraza-Zepeda CE, Escolar C. 2011a. Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: Insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–74.

    Article  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Rey A, Soliveres S, Garcia-Palacios P. 2011b. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. Ecosystems 14:835–47.

    Article  CAS  Google Scholar 

  • Coe KK, Belnap J, Sparks JP. 2012. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93:1626–36.

    Article  PubMed  Google Scholar 

  • Couradeau E, Karaoz U, Lim HC, da Rocha UN, Northen T, Brodie E, Garcia-Pichel F. 2016. Bacteria increase arid-land soil surface temperature through the production of sunscreens. Nat Commun 7:10373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J. 2015. Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126:363–78.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Gallardo A, Bowker MA, Wallenstein MD, Quero JL, Ochoa V, Gozalo B, Garcia-Gomez M, Soliveres S, Garcia-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Carreira JA, Chaieb M, Conceicao AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitan J, Gatica MG, Gomez-Gonzalez S, Guzman E, Gutierrez JR, Florentino A, Hepper E, Hernandez RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramirez E, Ramirez-Collantes DA, Romao R, Tighe M, Torres D, Torres-Diaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E. 2013. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502:672–6.

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Gallardo A, Covelo F, Prado-Comesaña A, Ochoa V, Maestre FT. 2015. Differences in thallus chemistry are related to species-specific effects of biocrust-forming lichens on soil nutrients and microbial communities. Funct Ecol 29:1087–98.

    Article  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Budel B, Andreae MO, Poschl U. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–62.

    Article  CAS  Google Scholar 

  • Escolar C, Maestre FT, Rey A. 2015. Biocrusts modulate warming and rainfall exclusion effects on soil respiration in a semi-arid grassland. Soil Biol Biochem 80:9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrenberg S, Faist AM, Howell A, Reed SC. 2017a. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil. https://doi.org/10.1007/s11104-017-3525-1.

    Article  Google Scholar 

  • Ferrenberg S, Reed SC, Belnap J. 2015. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc Natl Acad Sci 112:12116–21.

    Article  CAS  PubMed  Google Scholar 

  • Ferrenberg S, Tucker CL, Reed SC. 2017b. Biological soil crusts: diminutive communities of potential global importance. Fron Ecol Environ 15(3):160–7.

    Article  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP. 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–6.

    Article  Google Scholar 

  • Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J. 2003. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–21.

    Article  CAS  PubMed  Google Scholar 

  • Green TA, Proctor MC. 2016. Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity. biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 347–81.

    Book  Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JP. 2010. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Global Change Biol 16:2763–74.

    Article  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J. 2006. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–34.

    Article  Google Scholar 

  • Janssens IA, Kowalski AS, Ceulemans R. 2001. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric Forest Meteorol 106:61–9.

    Article  Google Scholar 

  • Jasoni RL, Smith SD, Arnone JA. 2005. Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Global Change Biol 11:749–56.

    Article  Google Scholar 

  • Kizito F, Campbell CS, Campbell GS, Cobos DR, Teare BL, Carter B, Hopmans JW. 2008. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. J Hydrol 352:367–78.

    Article  Google Scholar 

  • Klos PZ, Link TE, Abatzoglou JT. 2014. Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophys Res Lett 41:4560–8.

    Article  Google Scholar 

  • Lange O, Belnap J, Lange) O. 2003. Photosynthesis of soil-biota as dependent on environmental factors. Biol Soil Crusts: Struct Funct Manag 349–360.

  • Lange OL, Green TA, Heber U. 2001. Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? J Exp Bot 52:2033–42.

    Article  CAS  PubMed  Google Scholar 

  • Li XR, Zhang P, Su YG, Jia RL. 2012. Carbon fixation by biological soil crusts following revegetation of sand dunes in arid desert regions of China: a four-year field study. Catena 97:119–26.

    Article  CAS  Google Scholar 

  • Lloyd J, Taylor JA. 1994. On the temperature dependence of soil respiration. Funct Ecol 8:315–23.

    Article  Google Scholar 

  • Luo Y, Wan S, Hui D, Wallace LL. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–5.

    Article  CAS  PubMed  Google Scholar 

  • Maestre FT, Bowker MA, Eldridge DJ, Cortina J, Lázaro R, Gallardo A, Delgado-Baquerizo M, Berdugo M, Castillo-Monroy AP, Valencia E. 2016. Biological soil crusts as a model system in ecology. biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 407–25.

    Book  Google Scholar 

  • Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R. 2012a. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol 100:317–30.

    Article  CAS  Google Scholar 

  • Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A. 2013. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biol 19:3835–47.

    Article  Google Scholar 

  • Maestre FT, Salguero-Gómez R, Quero JL. 2012b. It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philos Trans R Soc Lond B Biol Sci 367(1606):3062–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschall M, Proctor MC. 2004. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E. 2015. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep 5:13767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogle K, Barber JJ. 2008. Bayesian data—model integration in plant physiological and ecosystem ecology. Progress in botany. Berlin: Springer. pp 281–311.

    Google Scholar 

  • Pan Z, Pitt WG, Zhang Y, Wu N, Tao Y, Truscott TT. 2016. The upside-down water collection system of Syntrichia caninervis. Nat Plants 2:16076.

    Article  PubMed  Google Scholar 

  • Pendleton RL, Pendleton BK, Howard GL, Warren SD. 2003. Growth and nutrient content of herbaceous seedlings associated with biological soil crusts. Arid Land Res Manag 17:271–81.

    Article  Google Scholar 

  • Pointing SB, Belnap J. 2014. Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales. Biodivers Conserv 23:1659–67.

    Article  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR. 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–3.

    Article  CAS  Google Scholar 

  • Raich J, Rastetter E, Melillo J, Kicklighter D, Steudler P, Peterson B, Grace A, Moore B, Vorosmarty C. 1991. Potential net primary productivity in South America: application of a global model. Ecol Appl 1:399–429.

    Article  CAS  PubMed  Google Scholar 

  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J. 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Change 2:752–5.

    Article  CAS  Google Scholar 

  • Reed SC, Maestre FT, Ochoa-Hueso R, Kuske CR, Darrouzet-Nardi A, Oliver M, Darby B, Sancho LG, Sinsabaugh RL, Belnap J. 2016. Biocrusts in the Context of Global Change. In: Weber B, Büdel B, Belnap J, Eds. Biological soil crusts: an organizing principle in drylands. Cham: Springer. p 451–76.

    Chapter  Google Scholar 

  • Rey A. 2015. Mind the gap: non-biological processes contributing to soil CO2 efflux. Global Change Biol 21:1752–61.

    Article  Google Scholar 

  • Rutherford WA, Painter TH, Ferrenberg S, Belnap J, Okin GS, Flagg C, Reed SC. 2017. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci Rep 7:44188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Safriel U, Adeel Z. 2005. Drylands. Chapter 22 of millennium ecosystem assessment. Washington, DC: Island Press.

    Google Scholar 

  • Sancho LG, Belnap J, Colesie C, Raggio J, Weber B. 2016. Carbon budgets of biological soil crusts at micro-, meso-, and global scales: an organizing principle in drylands. Berlin: Springer. pp 287–304.

    Book  Google Scholar 

  • Schimel DS. 2010. Drylands in the earth system. Science 327:418–19.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger WH. 2017. An evaluation of abiotic carbon sinks in deserts. Global Change Biol 23:25–7.

    Article  Google Scholar 

  • Schlesinger WH, Belnap J, Marion G. 2009. On carbon sequestration in desert ecosystems. Global Change Biol 15:1488–90.

    Article  Google Scholar 

  • Strickland MS, Lauber C, Fierer N, Bradford MA. 2009. Testing the functional significance of microbial community composition. Ecology 90:441–51.

    Article  PubMed  Google Scholar 

  • Thomas AD, Hoon SR, Dougill AJ. 2011. Soil respiration at five sites along the Kalahari transect: effects of temperature, precipitation pulses and biological soil crust cover. Geoderma 167–68:284–94.

    Article  CAS  Google Scholar 

  • Torres-Cruz TJ, Howell AJ, Reibold RH, McHugh TA, Eickhoff MA, Reed SC. 2018. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil. https://doi.org/10.1007/s11104-018-3580-2.

    Article  Google Scholar 

  • Tucker CL, Bell J, Pendall E, Ogle K. 2013. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biol 19:252–63.

    Article  Google Scholar 

  • Tucker CL, McHugh TA, Howell A, Gill R, Weber B, Belnap J, Grote E, Reed SC. 2017. The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry 135:239–49.

    Article  CAS  Google Scholar 

  • Tucker CL, Reed SC. 2016. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: a multi-model comparison. Biogeochemistry 128:155–69.

    Article  Google Scholar 

  • Weber B, Bowker M, Zhang Y, Belnap J. 2016. Natural recovery of biological soil crusts after disturbance. Biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 479–98.

    Book  Google Scholar 

  • Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-Caballero E, Steinkamp J, Meusel H, Elbert W, Behrendt T, Sörgel M, Cheng Y, Crutzen PJ, Su H, Pöschl U. 2015. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci 112:15384–9.

    Article  CAS  PubMed  Google Scholar 

  • Wertin T, Reed S, Belnap J. 2015. C3 and C4 plant responses to increased temperatures and altered monsoonal precipitation in a cool desert on the Colorado Plateau, USA. Oecologia 177:997–1013.

    Article  PubMed  Google Scholar 

  • Wilske B, Burgheimer J, Karnieli A, Zaady E, Andreae M, Yakir D, Kesselmeier J. 2008. The CO 2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev desert, Israel. Biogeosci Discus 5:1969–2001.

    Article  Google Scholar 

  • Wilske B, Burgheimer J, Maseyk K, Karnieli A, Zaady E, Andreae M, Yakir D, Kesselmeier J. 2009. Modeling the variability in annual carbon fluxes related to biological soil crusts in a Mediterranean shrubland. Biogeosci Discus 6:7295–324.

    Article  Google Scholar 

  • Wohlfahrt G, Fenstermaker LF, Arnone Iii JA. 2008. Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Global Change Biol 14:1475–87.

    Article  Google Scholar 

  • Wu L, Zhang YM, Zhang J, Downing A. 2015. Precipitation intensity is the primary driver of moss crust-derived CO2 exchange: Implications for soil C balance in a temperate desert of northwestern China. Eur J Soil Biol 67:27–34.

    Article  CAS  Google Scholar 

  • Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J. 2000. Patterns of CO2 exchange in biological soil crusts of successional age. Soil Biol Biochem 32:959–66.

    Article  CAS  Google Scholar 

  • Zhang Y, Aradottir AL, Serpe M, Boeken B. 2016. Interactions of biological soil crusts with vascular plants. Biological soil crusts: an organizing principle in drylands. Berlin: Springer. pp 385–406.

    Book  Google Scholar 

  • Zhao Y, Zhang ZS, Hu YG, Chen YL. 2016. The seasonal and successional variations of carbon release from biological soil crust-covered soil. J Arid Environ 127:148–53.

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by US Department of Energy Office of Science, Office of Biological and Environmental Research Terrestrial Ecosystem Sciences Program, under Award Number DE-SC-0008168 and by US Geological Survey Ecosystems Mission Area. We appreciate everyone who worked on this project, especially Armin Howell, Robin Reibold, Rose Egelhoff and Paige Austin. We thank Anthony Darrouzet-Nardi for valuable feedback on the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin L. Tucker.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tucker, C.L., Ferrenberg, S. & Reed, S.C. Climatic Sensitivity of Dryland Soil CO2 Fluxes Differs Dramatically with Biological Soil Crust Successional State. Ecosystems 22, 15–32 (2019). https://doi.org/10.1007/s10021-018-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-018-0250-4

Keywords

  • Bayesian statistics
  • biological soil crust
  • ecosystem model
  • gross primary production
  • moisture sensitivity
  • net soil exchange
  • semiarid shrublands
  • soil respiration
  • temperature sensitivity