Skip to main content

Advertisement

Log in

Aridity Induces Nonlinear Effects of Human Disturbance on Precipitation-Use Efficiency of Iberian Woodlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The effects of ecosystem degradation are pervasive worldwide and increasingly concerning under the present context of global changes in climate and land use. Theoretical studies and empirical evidence increasingly suggest that drylands are particularly prone to develop nonlinear functional changes in response to climate variations and human disturbance. Precipitation-use efficiency (PUE) represents the ratio of vegetation production to precipitation and provides a tool for evaluating human and climate impacts on landscape functionality. Holm oak (Quercus ilex) woodlands are one of the most conspicuous dry forest ecosystems in the western Mediterranean basin and present a variety of degraded states, due to their long history of human use. We studied the response of Iberian holm oak woodlands to human disturbance along an aridity gradient (that is, semi-arid, dry-transition and sub-humid conditions) using PUE estimations from enhanced vegetation index (EVI) observations of the Moderate-Resolution Imaging Spectroradiometer (MODIS). Our results indicated that PUE decreased linearly with disturbance intensity in sub-humid holm oak woodlands, but showed accelerated, nonlinear reductions with increased disturbance intensity in semi-arid and dry-transition holm oak sites. The impact of disturbance on PUE was larger for dry years than for wet years, and these differences increased with aridity from sub-humid to dry-transition and semi-arid holm oak woodlands. Therefore, aridity may also interact with ecosystem degradation in holm oak woodlands by reducing the landscape ability to buffer large changes in vegetation production caused by climate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Bai Z, Dent D, Wu Y, de Jong R. 2013. Land degradation and ecosystem services. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, Eds. Ecosystem services and carbon sequestration in the biosphere. Dordrecht: Springer. p 357–81.

    Chapter  Google Scholar 

  • Baldocchi DD, Xu L. 2007. What limits evaporation from Mediterranean oak woodlands—The supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv Water Resour 30:2113–22.

    Article  Google Scholar 

  • Berdugo M, Kéfi S, Soliveres S, Maestre FT. 2017. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat Ecol Evol 9:0003. https://doi.org/10.1038/s41559-016-0003.

    Article  Google Scholar 

  • Bestelmeyer B, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S. 2011. Analysis of abrupt transitions in ecological systems. Ecosphere 2:1–26.

    Article  Google Scholar 

  • Bochet E. 2015. The fate of seeds in the soil: a review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems. Soil 1:131–46.

    Article  Google Scholar 

  • Bochet E, Garcia-Fayos P, Poesen J. 2009. Topographic thresholds for plant colonization on semi-arid eroded slopes. Earth Surf Proc Land 34:1758–71.

    Article  Google Scholar 

  • Carnicer J, Barbeta A, Sperlich D, Coll M, Peñuelas J. 2013. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front Plant Sci 4:1–19.

    Article  Google Scholar 

  • Choler P, Sea W, Briggs P, Rapauch M, Leuning R. 2010. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences 7:907–20.

    Article  Google Scholar 

  • Cubera E, Moreno G. 2007. Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of central western Spain. Ann For Sci 64:355–64.

    Article  Google Scholar 

  • de Castro M, Martín-Vide J, Alonso S. 2005. The climate of Spain: past, present and scenarios for the 21th century. In: Moreno-Rodriguez JM, Ed. A preliminary general assessment in Spain due to the effects of climate change. Madrid: Ministerio de Medio Ambiente. p 1–62.

    Google Scholar 

  • Dube OP, Pickup G. 2001. Effects of rainfall variability and communal and semi-commercial grazing on land cover in southern African rangelands. Clim Res 17:195–208.

    Article  Google Scholar 

  • Gaitán JJ, Oliva GE, Bran DE, Maestre FT, Aguiar MR, Jobbágy EG, Buono GG, Ferrante D, Nakamatsu VB, Ciari G, Salomone JM, Massara V. 2014. Vegetation structure is important for explaining ecosystem function across Patagonian rangelands. J Ecol 102:1419–28.

    Article  Google Scholar 

  • Garbulsky M, Peñuelas J, Ogaya R, Filella I. 2013. Leaf and stand-level carbon uptake of a Mediterranean forest estimated using the satellite-derived reflectance indices EVI and PRI. Int J Remote Sens 34:1282–96.

    Article  Google Scholar 

  • García-Fayos P, Bochet E. 2009. Indication of antagonistic interaction between climate change and erosion on plant species richness and soil properties in semiarid Mediterranean ecosystems. Glob Change Biol 15:306–18.

    Article  Google Scholar 

  • Grove AT, Rackham O. 2001. The nature of Mediterranean Europe: an ecological history. New Haven: Yale University Press.

    Google Scholar 

  • Hein L. 2006. The impacts of grazing and rainfall variability on the dynamics of the Sahelian rangeland. J Arid Environ 64:488–504.

    Article  Google Scholar 

  • Holm AMcR, Watson IW, Loneragan WA, Adams MA. 2003. Loss of patch-scale heterogeneity on primary productivity and rainfall-use efficiency in Western Australia. Basic Appl Ecol 4:569–78.

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213.

    Article  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG. 2004. Convergence across biomes to a common rain-use efficiency. Nature 429:651–4.

    Article  CAS  Google Scholar 

  • Kéfi S, Rietkerk M, Alados CL, Pueyo Y, Papanastasis VP, ElAich A, de Ruiter PC. 2007. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449:213–18.

    Article  CAS  Google Scholar 

  • Kéfi S, Holmgren M, Scheffer M. 2016. When can positive interactions cause alternative stable states in ecosystems? Funct Ecol 30:88–97.

    Article  Google Scholar 

  • Köchy M, Mathaj M, Jeltsch F, Malkinson D. 2008. Resilience of stocking capacity to changing in arid to Mediterranean landscapes. Reg Environ Change 8:73–87.

    Article  Google Scholar 

  • Kutiel P, Lavee H. 1998. Effect of slope aspect on soil and vegetation properties along an aridity transect. Isr J Plant Sci 47:169–78.

    Article  Google Scholar 

  • Latorre JG, García-Latorre J, Sánchez-Picón A. 2001. Dealing with aridity: socio-economic structures and environmental changes in an arid Mediterranean region. Land Use Pol 18:53–64.

    Article  Google Scholar 

  • Le Houerou HN. 1984. Rain use efficiency: a unifying concept in arid-land ecology. J Arid Environ 7:213–47.

    Google Scholar 

  • Ludwig JA, Tongway DJ, Mardsen SG. 1999. Stripes, strands or stipples: modelling the influence of three landscape banding patterns on resource capture and productivity in semi-arid woodlands, Australia. Catena 37:257–73.

    Article  Google Scholar 

  • Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R, Berdugo M. 2016. Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst 47:215–37.

    Article  Google Scholar 

  • Marston RA. 2010. Geomorphology and vegetation on hillslopes: interactions, dependencies and feedback loops. Geomorphology 116:206–17.

    Article  Google Scholar 

  • Martínez-Valderrama J, Ibáñez J, del Barrio G, Sanjuán ME, Alcalá FJ, Martínez-Vicente S, Ruiz A, Puigdefábregas J. 2016. Present and future of desertification in Spain: implementation of a surveillance system to prevent land degradation. Sci Total Environ 563–564:169–78.

    Article  CAS  Google Scholar 

  • Mayor AG, Kéfi S, Bautista S, Rodríguez F, Cartení F, Rietkerk M. 2013. Feedbacks between vegetation pattern and resource loss dramatically decrease ecosystem resilience and restoration potential in a simple dryland model. Landsc Ecol 28:931–42.

    Article  Google Scholar 

  • McLean IMD, Willson RJ. 2011. Recent ecological responses to climate change support predictions of high extinction risk. Proc Natl Acad Sci USA 108:12337–42.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment. 2005. Ecosystems and human wellbeing: biodiversity synthesis. Washington, DC: World Resources Institute.

    Google Scholar 

  • Moreno-de las Heras M, Saco PM, Willgoose GR, Tongway DJ. 2012. Variations of hydrological connectivity of Australian semiarid landscapes indicate abrupt changes in rainfall-use efficiency of vegetation. J Geophys Res Biogeosci 117:G03009. https://doi.org/10.1029/2011jg001839.

    Article  Google Scholar 

  • Moreno-de las Heras M, Díaz-Sierra R, Turnbull L, Wainwright J. 2015. Assessing vegetation structure and ANPP dynamics in a grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships. Biogeosciences 12:2907–25.

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R 2 from generalized linear mixed-effect models. Methods Ecol Evol 4:133–42.

    Article  Google Scholar 

  • Noy-Meir I. 1975. Stability of grazing systems: an application of predator-prey graphs. J Ecol 63:459–81.

    Article  Google Scholar 

  • O’Connor TG, Haines LM, Snyman HA. 2001. Influence of precipitation and species composition on phytomass of a semi-arid African grassland. J Ecol 89:850–60.

    Article  Google Scholar 

  • Okin GS, Moreno-de las Heras M, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DPC. 2015. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front Ecol Environ 13:20–7.

    Article  Google Scholar 

  • Pasquato M, Medici C, Friend AD, Francés F. 2015. Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology 8:1024–36.

    Article  Google Scholar 

  • Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, Havstad KM. 2006. Disentangling complex landscapes: new insights to forecasting arid and semi-arid system dynamics. BioScience 56:491–501.

    Article  Google Scholar 

  • Pickup G. 1996. Estimating the effects of land degradation and rainfall variation on productivity in rangelands: an approach using remote sensing and models of grazing and herbage dynamics. J Appl Ecol 33:819–32.

    Article  Google Scholar 

  • Ponce-Campos GE, Moran AS, Huete A, Zhand Y, Bresloff C, Huxman TE, Eamus D, Bosch DD, Buda AR, Gunter SA, Scalley TH, Kitchen SG, McClaran MP, McNab WH, Montoya DS, Morgan JA, Peters DPC, Sadler EJ, Seyfred MS, Starks PJ. 2013. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494:349–53.

    Article  CAS  Google Scholar 

  • Prince SD, Wessels KJ, Tucker CJ, Nicholson SE. 2007. Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Change Biol 13:1308–13.

    Article  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J. 2004. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305:1926–9.

    Article  CAS  Google Scholar 

  • Ruppert JC, Holm A, Miehe S, Muldavin E, Snyman HA, Wesche K, Linstädter A. 2012. Meta-analysis of ANPP and rain-use efficiency confirms indicative value for degradation and supports non-linear response along precipitation gradients in drylands. J Veg Sci 23:1035–50.

    Article  Google Scholar 

  • Saco PM, Moreno-de las Heras M. 2013. Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour Res 49:115–26.

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–6.

    Article  CAS  Google Scholar 

  • Schlesinger WH, Reynolds JF, Cunningham GL, Huenneke LF, Jarrell WM, Virginia RA, Whithford WG. 1990. Biological feedbacks in global desertification. Science 247:1043–8.

    Article  CAS  Google Scholar 

  • Soil Survey Staff. 1987. Keys to soil taxonomy. Ithaca: US Department of Agriculture, Soil Management Support Services, Cornell University.

    Google Scholar 

  • Soliveres S, Smith C, Maestre FT. 2015. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev 90:297–313.

    Article  Google Scholar 

  • Stevenson AC. 2000. The Holocene forest history of the Montes Universales, Teruel, Spain. The Holocene 10:603–10.

    Article  Google Scholar 

  • Suding KN, Gross KL, Houseman GR. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53.

    Article  Google Scholar 

  • Terradas J. 1999. Holm oak and holm oak forests: an introduction. In: Rodà F, Retana J, Gracia CA, Bellot J, Terradas J, Eds. Ecology of Mediterranean evergreen forests. Berlin: Springer. p 3–14.

    Chapter  Google Scholar 

  • UNEP. 1992. World atlas of desertification. United Nations Environmental Program (UNEP). London: Edward Arnold.

    Google Scholar 

  • Valiente-Baunet A, Verdú M. 2013. Human impacts on multiple ecological networks act synergistically to drive ecosystem collapse. Front Ecol Environ 11:408–13.

    Article  Google Scholar 

  • Verón SR, Paruelo JM. 2010. Desertification alters the response of vegetation to changes in precipitation. J Appl Ecol 47:1233–41.

    Article  Google Scholar 

  • Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D. 2007. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case of study in South Africa. J Arid Environ 68:271–97.

    Article  Google Scholar 

  • Xu C, Van Nes EH, Holmgran M, Kéfi S, Scheffer M. 2015. Local facilitation may cause tipping points on a landscape level preceded by early warning indicators. Am Nat 186:81–90.

    Article  Google Scholar 

  • Zhang X, Moran MS, Zhao X, Liu S, Zhou T, Ponce-Campos GE, Liu F. 2014. Impact of prolonged drought on rainfall use efficiency using MODIS data across China in the early 21st century. Remote Sens Environ 150:188–97.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a project (INDICAR, CGL2013-42213-R) funded by the Spanish Ministry of Economy, Industry and Competitiveness (MEIC). MMdlH research was supported by a Beatriu de Pinós fellowship (2014 BP-B00111) co-funded by the Generalitat de Catalunya and the European Commission, and a Juan de la Cierva fellowship (IJCI-2015-26463) funded by the MEIC. We are grateful to the NASA, IGN and AEMET for granting access to the MODIS EVI data, high-resolution PNOA orthophotos and precipitation records, respectively, that were applied in this study. We also thank two anonymous reviewers and the subject-matter editor, Brandon Bestelmeyer, for their helpful comments, and Jesús Romero for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Moreno-de las Heras.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-de las Heras, M., Bochet, E., Monleón, V. et al. Aridity Induces Nonlinear Effects of Human Disturbance on Precipitation-Use Efficiency of Iberian Woodlands. Ecosystems 21, 1295–1305 (2018). https://doi.org/10.1007/s10021-017-0219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0219-8

Keywords

Navigation