Skip to main content

Advertisement

Log in

Does Nutrient Availability Regulate Seagrass Response to Elevated CO2?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Future increases in oceanic carbon dioxide concentrations (CO2(aq)) may provide a benefit to submerged plants by alleviating photosynthetic carbon limitation. However, other environmental factors (for example, nutrient availability) may alter how seagrasses respond to CO2(aq) by regulating the supply of additional resources required to support growth. Thus, questions remain in regard to how other factors influence CO2(aq) effects on submerged vegetation. This study factorially manipulated CO2(aq) and nutrient availability, in situ, within a subtropical seagrass bed for 350 days, and examined treatment effects on leaf productivity, shoot density, above- and belowground biomass, nutrient content, carbohydrate storage, and sediment organic carbon (Corg). Clear, open-top chambers were used to replicate CO2(aq) forecasts for the year 2100, whereas nutrient availability was manipulated via sediment amendments of nitrogen (N) and phosphorus (P) fertilizer. We provide modest evidence of a CO2 effect, which increased seagrass aboveground biomass. CO2(aq) enrichment had no effect on nutrient content, carbohydrate storage, or sediment Corg content. Nutrient addition increased leaf productivity and leaf N content, however did not alter above- or belowground biomass, shoot density, carbohydrate storage, or Corg content. Treatment interactions were not significant, and thus NP availability did not influence seagrass responses to elevated CO2(aq). This study demonstrates that long-term carbon enrichment may alter the structure of shallow seagrass meadows, even in relatively nutrient-poor, oligotrophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production. New Phytol 165:351–71.

    Article  Google Scholar 

  • Alexandre A, Silva J, Buapet P, Bjork M, Santos R. 2012. Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2:2625–35.

    Article  Google Scholar 

  • Apostolaki ET, Vizzini S, Hendriks IE, Olsen YS. 2014. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar Environ Res 99:9–15.

    Article  CAS  Google Scholar 

  • Armitage AR, Frankovich TA, Heck KL, Fourqurean JW. 2005. Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries 28:422–34.

    Article  Google Scholar 

  • Armitage AR, Frankovich TA, Fourqurean JW. 2006. Variable responses within epiphytic and benthic microalgal communities to nutrient enrichment. Hydrobiologia 569:423–35.

    Article  CAS  Google Scholar 

  • Armitage AR, Frankovich TA, Fourqurean JW. 2011. Long-term effects of adding nutrients to an oligotrophic coastal environment. Ecosystems 14:430–44.

    Article  CAS  Google Scholar 

  • Bazzaz FA. 1990. The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–96.

    Article  Google Scholar 

  • Beer S, Koch E. 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Mar Ecol Prog Ser 141:199–204.

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA. 1985. Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–92.

    Article  Google Scholar 

  • Burnell OW, Russell BD, Irving AD, Connell SD. 2014. Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia 176:871–82.

    Article  Google Scholar 

  • Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365.

    Article  CAS  Google Scholar 

  • Campbell JE, Fourqurean JW. 2011. Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnol Oceanogr Methods 9:97–109.

    Article  CAS  Google Scholar 

  • Campbell JE, Fourqurean JW. 2013. Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Mar Biol 160:1465–75.

    Article  CAS  Google Scholar 

  • Campbell JE, Fourqurean JW. 2014. Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities. J Ecol 102:730–7.

    Article  CAS  Google Scholar 

  • Chapin FS, Schulze ED, Mooney HA. 1990. The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–47.

    Article  Google Scholar 

  • Cohen J. 1988. Statistical power analysis for the behavioral sciences. New York: Routledge Academic.

    Google Scholar 

  • Cox TE, Schenone S, Delille J, Díaz-Castañeda V, Alliouane S, Gattuso J-P, Gazeau F. 2015. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J Ecol 103:1594–609.

    Article  CAS  Google Scholar 

  • Cox TE, Gazeau F, Alliouane S, Hendriks IE, Mahacek P, Le Fur A, Gattuso JP. 2016. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13:2179–94.

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–43.

    Article  CAS  Google Scholar 

  • Duarte CM. 1990. Seagrass nutrient content. Mar Ecol Prog Ser 67:201–7.

    Article  Google Scholar 

  • Duarte CM. 1991. Seagrass depth limits. Aquat Bot 40:363–77.

    Article  Google Scholar 

  • Duarte CM, Chiscano CL. 1999. Seagrass biomass and production: a reassessment. Aquat Bot 65:159–74.

    Article  Google Scholar 

  • Ellsworth DS, Anderson IC, Crous KY, Cooke J, Drake JE, Gherlenda AN, Gimeno TE, Macdonald CA, Medlyn BE, Powell JR, Tjoelker MG, Reich PB. 2017. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat Clim Change 7:279–82.

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM. 2011. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–9.

    Article  CAS  Google Scholar 

  • Ferdie M, Fourqurean JW. 2004. Responses of seagrass communities to fertilization along a gradient of relative availability of nitrogen and phosphorus in a carbonate environment. Limnol Oceanogr 49:2082–94.

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R. 2007. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci 104:14014–19.

    Article  CAS  Google Scholar 

  • Fourqurean JW, Zieman JC. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61:229–45.

    Article  CAS  Google Scholar 

  • Fourqurean JW, Zieman JC, Powell GVN. 1992. Phosphorus limitation of primary production in Florida Bay—evidence from C–N–P ratios of the dominant seagrass Thalassia testudinum. Limnol Oceanogr 37:162–71.

    Article  CAS  Google Scholar 

  • Fourqurean JW, Willsie A, Rose CD, Rutten LM. 2001. Spatial and temporal pattern in seagrass community composition and productivity in south Florida. Mar Biol 138:341–54.

    Article  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marba N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–9.

    Article  CAS  Google Scholar 

  • Gattuso JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG. 2014. Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences 11:4057–75.

    Article  CAS  Google Scholar 

  • Gil M, Armitage AR, Fourqurean JW. 2006. Nutrient impacts on epifaunal density and species composition in a subtropical seagrass bed. Hydrobiologia 569:437–47.

    Article  CAS  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–9.

    Article  CAS  Google Scholar 

  • Hendriks IE, Sintes T, Bouma TJ, Duarte CM. 2008. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–73.

    Article  Google Scholar 

  • Hungate BA, Van Groenigen K-J, Six J, Jastrow JD, Luo Y, De Graaff M-A, Van Kessel C, Osenberg CW. 2009. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Change Biol 15:2020–34.

    Article  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. 2005. Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol 11:2057–64.

    Article  Google Scholar 

  • Jiang ZJ, Huang XP, Zhang JP. 2010. Effects of CO2 enrichment on photosynthesis, growth, and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52:904–13.

    Article  CAS  Google Scholar 

  • Johnson KM, Burney CM, Sieburth JM. 1981. Doubling the production and precision of the MBTH spectrophotometric assay for dissolved carbohydrates in seawater. Mar Chem 10:467–73.

    Article  CAS  Google Scholar 

  • Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M, Caves JK, Russell BD, Connell SD, Kirkwood BJ, Brewer P, Peltzer E, Silverman J, Caldeira K, Dunbar RB, Koseff JR, Monismith SG, Mitchell BG, Dove S, Hoegh-Guldberg O. 2012. A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2:413.

    Article  CAS  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–32.

    Article  Google Scholar 

  • Korner C. 2000. Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–619.

    Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG. 2010. REVIEW AND SYNTHESIS: meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–34.

    Article  Google Scholar 

  • Lee KS, Dunton KH. 1996. Production and carbon reserve dynamics of the seagrass Thalassia testudinum in Corpus Christi bay, Texas, USA. Mar Ecol Prog Ser 143:201–10.

    Article  Google Scholar 

  • Lee KS, Dunton KH. 1997. Effects of in situ light reduction on the maintenance, growth and partitioning of carbon resources in Thalassia testudinum Banks ex Konig. J Exp Mar Biol Ecol 210:53–73.

    Article  Google Scholar 

  • Lewis E, Wallace DWR. 1998. Program developed for CO2 system calculations. ORNL/CDIAC-105. Oak Ridge: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy.

    Book  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628.

    Article  CAS  Google Scholar 

  • Long MH, McGlathery KJ, Zieman JC, Berg P. 2008. The role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments. Limnol Oceanogr 53:2616–26.

    Article  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–9.

    Article  Google Scholar 

  • Luo YQ, Hui DF, Zhang DQ. 2006. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 87:53–63.

    Article  Google Scholar 

  • Martinez-Crego B, Olive I, Santos R. 2014. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems. Biogeosciences 11:7237–49.

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907.

    Article  CAS  Google Scholar 

  • Mutchler T, Sullivan MJ, Fry B. 2004. Potential of N-14 isotope enrichment to resolve ambiguities in coastal trophic relationships. Mar Ecol Prog Ser 266:27–33.

    Article  Google Scholar 

  • Norby RJ, Zak DR. 2011. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203.

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE. 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–73.

    Article  Google Scholar 

  • Olivé I, Silva J, Lauritano C, Costa MM, Ruocco M, Procaccini G, Santos R. 2017. Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents. Sci Rep 7:42278.

    Article  CAS  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schafer KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–72.

    Article  CAS  Google Scholar 

  • Ow YX, Collier CJ, Uthicke S. 2015. Responses of three tropical seagrass species to CO2 enrichment. Mar Biol 162:1005–17.

    Article  CAS  Google Scholar 

  • Ow YX, Vogel N, Collier CJ, Holtum JAM, Flores F, Uthicke S. 2016. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species. Sci Rep 6:23093.

    Article  CAS  Google Scholar 

  • Pakulski JD, Benner R. 1992. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar Chem 40:143–60.

    Article  CAS  Google Scholar 

  • Palacios SL, Zimmerman RC. 2007. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar Ecol Prog Ser 344:1–13.

    Article  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM. 1999. Elevated CO2 and plant structure: a review. Glob Change Biol 5:807–37.

    Article  Google Scholar 

  • Rastetter EB, Agren GI, Shaver GR. 1997. Responses of N-limited ecosystems to increased CO2: a balanced-nutrition, coupled-element-cycles model. Ecol Appl 7:444–60.

    Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–5.

    Article  CAS  Google Scholar 

  • Reich PB, Hobbie SE, Lee TD. 2014. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat Geosci 7:920–4.

    Article  CAS  Google Scholar 

  • Russell BD, Connell SD, Uthicke S, Muehllehner N, Fabricius KE, Hall-Spencer JM. 2013. Future seagrass beds: can increased productivity lead to increased carbon storage? Mar Pollut Bull 73:463–9.

    Article  CAS  Google Scholar 

  • Stitt M, Krapp A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ 22:583–621.

    Article  CAS  Google Scholar 

  • Takahashi M, Noonan SHC, Fabricius KE, Collier CJ. 2016. The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES J Mar Sci 73:876–86.

    Article  Google Scholar 

  • Zieman JC. 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4:139–43.

    Article  Google Scholar 

  • Zimmerman RC, Kohrs DG, Steller DL, Alberte RS. 1997. Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607.

    Article  CAS  Google Scholar 

  • Zimmerman RC, Hill VJ, Gallegos CL. 2015. Predicting effects of ocean warming, acidification, and water quality on Chesapeake region eelgrass. Limnol Oceanogr 60:1781–804.

    Article  CAS  Google Scholar 

  • Zimmerman RC, Hill VJ, Jinuntuya M, Celebi B, Ruble D, Smith M, Cedeno T, Swingle WM. 2017. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar Ecol Prog Ser 566:1–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Patrick Rice and the Florida Keys Community College for logistical support. Jennifer Sweatman, Bryan Dewsbury, Nathan Lemoine and Thomas Frankovich provided assistance in the field. This work was conducted in the Florida Keys National Marine Sanctuary under permits FKNMS-2010-015 and FKNMS-2010-015A and was supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research Program under Grant No. DBI-0620409, and a Graduate School Doctoral Evidence Acquisition Fellowship awarded to J.E.C by Florida International University. This is contribution #74 from the Marine Education and Research Center in the Institute for Water and Environment at Florida International University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin E. Campbell.

Additional information

Authors contributions

JEC and JWF designed the study. JEC collected and analyzed data. JEC and JWF wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, J.E., Fourqurean, J.W. Does Nutrient Availability Regulate Seagrass Response to Elevated CO2?. Ecosystems 21, 1269–1282 (2018). https://doi.org/10.1007/s10021-017-0212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0212-2

Keywords

Profiles

  1. James W. Fourqurean