Skip to main content

Advertisement

Log in

Landuse Change in Savannas Disproportionately Reduces Functional Diversity of Invertebrate Predators at the Highest Trophic Levels: Spiders as an Example

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Predators play a disproportionately positive role in ensuring integrity of food webs, influencing ecological processes and services upon which humans rely. Predators tend to be amongst the first species to be affected by anthropogenic disturbance, however. Spiders impact invertebrate population dynamics and stabilise food webs in natural and agricultural systems (potentially mitigating against crop pests and reduced yields). Africa’s savannas are undergoing continent-wide conversion from low-density rangelands to villages and croplands, as human populations burgeon. Despite limited research, and evidence of deleterious impacts to biodiversity, African savannas are earmarked by prominent international organisations for conversion to cropland. Given the key role of spiders in food webs, they can have beneficial impacts in agroecosystems. Furthermore, functional diversity (FD) reflects ecosystem pattern and processes better than species diversity, so we evaluated impacts of large-scale landuse change on both species richness and FD. We surveyed spiders using pitfall traps at 42 sites (14 replicates each in rangeland, cropland, and villages) in South African savannas, investigating effects of landuse, season, and habitat variables on spider species diversity and FD. Species richness was lowest in villages. FD was lowest in cropland, however, with reduced representation of traits associated with hunting of larger invertebrates. Furthermore, there were fewer specialists in croplands. These findings suggest that even when cropland does not impact species diversity, loss of FD can still occur. As savanna systems transform, impacts on invertebrate population dynamics may increase the possibility of a breakdown in pest control in natural and agricultural systems, given changes in FD of invertebrate predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Bates D, Maechler M, Bolker BM, Walker S. 2015. ‘Fitting linear mixed-effects models using lme4.’ ArXiv e-print. J Stat Software, http://arxiv.org/abs/14065823.

  • Bolger DT, Suarez A, Crooks K, Morrison S, Case T. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10(10):1230–48.

    Article  Google Scholar 

  • Bonte D, Vandenbroecke N, Lens L, Maelfait J. 2003. Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. Proc R Soc B Biol Sci 270:1601–7.

    Article  Google Scholar 

  • Botha M, Siebert SJ, van den Berg J. 2016. Grass abundance maintains positive plant-arthropod diversity relationships in maize fields and margins in South Africa. Agric For Entomol. http://doi.wiley.com/10.1111/afe.12195.

  • Botha M, Siebert SJ, van den Berg J, Maliba BG, Ellis SM. 2015. Plant and arthropod diversity patterns of maize agro-ecosystems in two grassy biomes of South Africa. Biodivers Conserv 24:1797–824.

    Article  Google Scholar 

  • Buchholz S. 2010. Ground spider assemblages as indicators for habitat structure in inland sand ecosystems. Biodivers Conserv 19:2565–95.

    Article  Google Scholar 

  • Cardoso P, Pekár S, Jocqué R, Coddington JA. 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6:1–10.

    Google Scholar 

  • Cardoso P, Silva I, De Oliveira NG, Serrano ARM. 2004. Indicator taxa of spider (Araneae) diversity and their efficiency in conservation. Biol Conserv 120:517–24.

    Article  Google Scholar 

  • Carter PE, Rypstra AL. 1995. Top-down effects in soybean agroecosystems: spider density affects herbivore damage. Oikos 72:433–9.

    Article  Google Scholar 

  • Carvalho FMV, De Marco P, Ferreira LG. 2009. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biol Conserv 142:1392–403.

    Article  Google Scholar 

  • Cattin M, Blandenier G, Banas ěk-Richter C, Bersier L. 2003. The impact of mowing as a management strategy for wet meadows on spider (Araneae) communities. Biol Conserv 113:179–88.

    Article  Google Scholar 

  • Coe M, Cumming D, Phillipson J. 1976. Biomass and production of large Africa herbivores in relation to rainfall and primary production. Oecologia 22:341–54.

    Article  PubMed  CAS  Google Scholar 

  • Colwell R. 2006. EstimateS: statistical estimation of species richness and shared species from samples. http://purl.oclc.org/estimates.

  • Colwell RK, Coddington J. 1994. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc B Biol Sci 345:101–18.

    Article  CAS  Google Scholar 

  • Cornwell W, Ackerly D. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–26.

    Article  Google Scholar 

  • Cortez J, Garnier E, Perez-Harguindeguy NDM, Gillon D. 2007. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant Soil 296:19–34.

    Article  CAS  Google Scholar 

  • Dennis P, Young M, Bentley C. 2001. The effects of varied grazing management on epigeal spiders, harvestmen and pseudoscorpions of Nardus stricta grassland in upland Scotland. Agric Ecosyst Environ 86:39–57.

    Article  Google Scholar 

  • Dias SC, Carvalho LS, Bonaldo AB, Brescovit AD. 2009. Refining the establishment of guilds in Neotropical spiders (Arachnida: Araneae). J Nat Hist 44:219–39.

    Article  Google Scholar 

  • Diaz S, Cabido M. 2001. Vive la difference: plant functional diversity matters to ecosystem processes: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–55.

    Article  Google Scholar 

  • Dippenaar-Schoeman AS. 2013. Field guide to the spiders of southern Africa. Cape Town: Lapa Publishers.

    Google Scholar 

  • Dobson A, Lodge D, Alder J, Cumming GS, Keymer J, McGlade J, Mooney H, Rusak J, Sala O, Wolters V, Wall D, Winfree R, Xenopoulos M. 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87:1915–24.

    Article  PubMed  Google Scholar 

  • Elias DO, Land BR, Mason AC, Hoy RR. 2006. Measuring and quantifying dynamic visual signals in jumping spiders. J Comp Physiol A 192:785–97.

    Article  Google Scholar 

  • Elias DO, Mason AC, Hoy RR. 2004. The effect of substrate on the efficacy of seismic courtship signal transmission in the jumping spider Habronattus dossenus (Araneae: Salticidae). J Exp Biol 207:4105–10.

    Article  PubMed  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J, Elmqvist T, Folke C, Walker B, Nystrm M, Peterson G, Bengtsson J. 2003. Diversity. Ecosyst Change Resil 1:488–94.

    Google Scholar 

  • Finke DL, Denno RF. 2004. Predator diversity dampens trophic cascades. Nature 429:407–10.

    Article  PubMed  CAS  Google Scholar 

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richers BT, Lin BB, Simpson N, Mayfield MM, DeClerck F. 2009. Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33.

    Article  PubMed  Google Scholar 

  • FAO. 2009. Food and Agricultural Organisation of the United Nations. Africa’s sleeping giant. http://www.fao.org/news/story/en/item/20964/icode/.

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks DPM, O’Connell C. 2011. Solutions for a cultivated planet. Nature 478:337–42.

    Article  PubMed  CAS  Google Scholar 

  • Foord S, Dippenaar-Schoeman A, Haddad C, Lotz L, Lyle R. 2011. The faunistic diversity of spiders Savanna Biome in South African. Trans R Soc S Afr 66:170–201.

    Article  Google Scholar 

  • Forster L. 1977. A qualitative analysis of hunting behaviour in jumping spiders (Araneae: Salticidae). New Zeal J Zool 4:51–62.

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas M, Roumet C. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–7.

    Article  Google Scholar 

  • Gerland P, Raftery A, Ševčíková H, Li N, Gu D, Spoorenberg T, Alkema L, Fosdick BK, Chunn J, Lalic N, Bay G, Buettner T, Heilig G, Wilmoth J, Gerland P, Raftery A. 2014. World population stabilization unlikely this century. Science 346:234–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GlobCover. 2010. The GlobCover 2009 Project. http://dup.esrin.esa.it/globcover/.

  • Gotelli NJ, Rohde K. 2002. Co-occurence of ectoparasites of marine fishes: a null model analysis. Ecol Lett 5:86–94.

    Article  Google Scholar 

  • Greenstone MH. 1984. Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62:299–304.

    Article  PubMed  Google Scholar 

  • Greenstone MH, Morgan CE, Hultsch A-L, Farrow RA, Dowse JE. 1987. Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and mass distributions. J Arachnol 15:163–70.

    Google Scholar 

  • Joseph GS, Makumbe M, Seymour CL, Cumming GS, Mahlangu Z, Cumming DHM. 2015. Termite mounds mitigate against 50 years of herbivore-induced reduction of functional diversity of savanna woody plants. Landsc Ecol 30:2161–74.

    Article  Google Scholar 

  • Joseph GS, Seymour CL, Cumming GS, Cumming DHM, Mahlangu Z. 2014. Termite mounds increase functional diversity of woody plants in African savannas. Ecosystems 17:808–19.

    Article  CAS  Google Scholar 

  • Laliberte E, Legendre P. 2010. A distance-based framework for measuring functional diversity from multiple traits: A distance-based framework for measuring from multiple traits functional diversity. Ecology 91:299–305.

    Article  PubMed  Google Scholar 

  • Laliberté E, Shipley B. 2011. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-11. http://CRAN.R-project.org/package=FD.

  • Larsen TH, Williams NM, Kremen C. 2005. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–47.

    Article  PubMed  Google Scholar 

  • Lavorel S, Grigulis K, McIntyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quétier F, Thébault A, Bonis A. 2008. Assessing functional diversity in the field—methodology matters!. Funct Ecol 22:134–47.

    Google Scholar 

  • Lemessa D, Hambäck PA, Hylander K. 2015. The effect of local and landscape level land-use composition on predatory arthropods in a tropical agricultural landscape. Landsc Ecol 30:167–80.

    Article  Google Scholar 

  • Losey JE, Denno RF. 1998. Positive predator-predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–52.

    Google Scholar 

  • Malumbres-Olarte J, Barratt BIP, Vink CJ, Paterson AM, Cruickshank RH, Ferguson CM, Barton DM. 2014. Big and aerial invaders: dominance of exotic spiders in burned New Zealand tussock grasslands. Biol Invasions 16:2311–22.

    Article  Google Scholar 

  • Mauda EV, Joseph GS, Seymour CL, Munyai TC, Foord SH. 2017. Changes in landuse alter ant diversity, assemblages and dominant functional groups in African savannas. Biodivers Conserv (in press).

  • McIntyre B., Herren H, Wakhungu J, Watson R. 2009. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD): global report. Washington DC.

  • Midega CAO, Khan ZR, Van Den Berg J, Ogol CKPO, Dippenaar-Schoeman AS, Pickett JA, Wadhams LJ. 2008. Response of ground-dwelling arthropods to a ‘push-pull’ habitat management system: Spiders as an indicator group. J Appl Entomol 132:248–54.

    Article  Google Scholar 

  • Modiba R, Joseph GS, Seymour C, Fouché P, Foord S. 2017. Restoration of riparian systems through clearing of invasive plant species improves functional diversity of Odonate assemblages. Biol Conserv 214:46–54.

    Article  Google Scholar 

  • Moring J, Stewart K. 1994. Habitat partitioning by the Wolf Spider (Araneae, Lycosidae) Guild in Streamside and Riparian Vegetation Zones of the Conejos River, Colorado. J Arachnol 22:205–17.

    Google Scholar 

  • Mucina L, Rutherford MC. 2006. The vegetation of South Africa, Lesotho and Swaziland. In: Pretoria: South African National Biodiversity Institute. pp 492–3.

  • Munyai TC, Foord SH. 2015. Temporal patterns of ant diversity across a mountain with climatically contrasting aspects in the tropics of Africa. PLoS ONE 10:1–16.

    Article  CAS  Google Scholar 

  • Naeem S, Li S. 1997. Africa appears to have been dominated by tetanurans, including Biodiversity enhances ecosystem reliability. Nature 390:507–9.

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–42.

    Article  Google Scholar 

  • Nyffeler M, Birkhofer K. 2017. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat 104:30.

    Article  CAS  Google Scholar 

  • Nyffeler M, Sunderland K. 2003. Composition, abundance and pest control potential of spider communities in agroecosystems: a comparison of European and US studies. Agric Ecosyst Environ 95:579–612.

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens H, Szoecs E, Wagner H. 2016. Vegan, Community Ecology Package. R-CRAN https://cr.

  • Otoshi M, Bichier P, Philpott SM. 2015. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ Entomol 44:1–9.

    Article  Google Scholar 

  • Pan C, Zhao H, Feng Q, Liu J, Liu L, Cai Y, Liu C, Li J. 2015. Temporal variations of ground-dwelling arthropods in relation to grassland salinization. Eur J Soil Biol 68:25–32.

    Article  Google Scholar 

  • Patrick L, Kershner M, Fraser L. 2012. Epigeal spider responses to fertilization and plant litter: testing biodiversity theory at the ground level. American Arachnological Society 40:309–24.

    Google Scholar 

  • Pekar S, Lubin Y. 2003. Habitats and interspecific associations of Zodariidae spiders in the Negev (Araneae: Zodariidae). Isr J Zool 49:255–67.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2002. Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–11.

    Article  Google Scholar 

  • Petchey OL, Gaston KJ. 2006. Functional diversity: Back to basics and looking forward. Ecol Lett 9:741–58.

    Article  PubMed  Google Scholar 

  • Petráková L, Líznarová E, Pekár S, Haddad CR, Sentenská L, Symondson WOC. 2015. Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci Rep 5:14013. doi:10.1038/srep14013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkus-Rendón MA, León-Cortés JL, Ibarra-Núñez G. 2006. Spider diversity in a tropical habitat gradient in Chiapas, Mexico. Divers Distrib 12:61–9.

    Article  Google Scholar 

  • Platnick N. 2017. World spider catalog version 18.0. Nat Hist Museum Bern.

  • Pluess T, Opatovsky I, Gavish-Regev E, Lubin Y, Schmidt-Entling MH. 2010. Non-crop habitats in the landscape enhance spider diversity in wheat fields of a desert agroecosystem. Agric Ecosyst Environ 137:68–74.

    Article  Google Scholar 

  • Podani J. 1999. Extending Gower’s general coefficient of similarity to ordinal characters. Taxon 48:331–40.

    Article  Google Scholar 

  • Podani J, Schmera D. 2006. On dendrogram-based measures of functional diversity. Oikos 115:179–85.

    Article  Google Scholar 

  • R Core Team R. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, http://www.r-project.org/. http://www.r-project.org/.

  • Riggio J, Jacobson A, Dollar L, Bauer H. 2013. The size of savannah Africa: a lion’s (Panthera leo) view. Biodivers Conserv 22:17–35.

    Article  Google Scholar 

  • Rypstra AL, Schmidt JM, Reif BD, Devito J, Matthew H, Rypstra AL, Schmidt JM, Reif BD, Devito J, Persons MH. 2007. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116:853–63.

    Article  Google Scholar 

  • Sattler T, Borcard D, Arlettaz R, Bontadina F, Legendre P, Obrist M, Moretti M. 2010. Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology 9:3343–53.

    Article  Google Scholar 

  • Schmidt MH, Lauer A, Purtauf T, Thies C, Schaefer M, Tscharntke T. 2003. Relative importance of predators and parasitoids for cereal aphid control. Proc R Soc B Biol Sci 270:1905–9.

    Article  Google Scholar 

  • Schmidt MH, Tscharntke T. 2005. Landscape context of sheetweb spider (Araneae: Linyphiidae) abundance in cereal fields. J Biogeogr 32:467–73.

    Article  Google Scholar 

  • Schmitz OJ. 2009. Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–45.

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Hambäck P, Beckerman AP. 2000. Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–53.

    Article  PubMed  Google Scholar 

  • Seymour CL, Joseph GS, Makumbe M, Cumming GS, Mahlangu Z, Cumming DHM. 2016. Woody species composition in an African savanna: determined by centuries of termite activity but modulated by 50 years of ungulate herbivory. J Veg Sci 27:824–33.

    Article  Google Scholar 

  • Seymour CL, Simmons RE, Joseph GS, Slingsby JA. 2015. On bird functional diversity: species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18:971–84.

    Article  Google Scholar 

  • Shochat E, Stefanov WL, Whitehouse MEA, Faeth SH. 2004. Urbanization and spider diversity: influences of human modification of habitat structure and productivity. Ecol Appl 14:268–80.

    Article  Google Scholar 

  • Snyder WE, Wise DH. 2001. Contrasting trophic cascades generated by a community of generalist predators. Ecology 82:1571–83.

    Article  Google Scholar 

  • Suding K, Lavorel S, Chapin F, Cornelissen J, Diaz S, Garnie E, Goldberg D, Hooper D, Jackson S, Navas M-L. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob Chang Biol 14:1125–40.

    Article  Google Scholar 

  • Sunderland K, Samu F. 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13.

    Article  Google Scholar 

  • Tilman D. 2001. Functional diversity. Encycl Biodivers 3:109–20.

    Article  Google Scholar 

  • Uetz GW, Halaj J, Cady AB. 1999. Guild structure of spiders in major crops. J Arachnol 27:270–80.

    Google Scholar 

  • UNICEF. 2017. Child nutrition UNICEF DATA. https://data.unicef.org/topic/nutrition/malnutrition/.

  • Walker B, Kinzig A, Langridge J. 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2:95–113.

    Article  Google Scholar 

  • Wu Y, Cai Q, Lin C, Chen Y, Li Y, Cheng X. 2009. Response of ground-dwelling spiders to four hedgerow species on sloped agricultural fields in Southwest China. Prog Nat Sci 19:337–46.

    Article  Google Scholar 

  • Zurek DB, Taylor AJ, Evans CS, Nelson XJ. 2010. The role of the anterior lateral eyes in the vision-based behaviour of jumping spiders. J Exp Biol 213:2372–8.

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. 2009. Mixed effects models and extensions in ecology with R. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgements

We thank the NRF and Department of Science &Technology through the South African Research Chairs Initiative Chair on Biodiversity Value and Change in the Vhembe Biosphere Reserve, hosted by the University of Venda. This project was supported by the German Federal Government, BMBF (SPACES programme: Limpopo Living Landscapes Project). We thank the editors and two anonymous reviewers for comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grant S. Joseph.

Additional information

Author contributions

GJ, EM, and SF planned the study. EM, TM, and AD collected data. CS and GJ analysed the data. GJ, CS, EM, SF, TM, and AD wrote the paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, G.S., Mauda, E.V., Seymour, C.L. et al. Landuse Change in Savannas Disproportionately Reduces Functional Diversity of Invertebrate Predators at the Highest Trophic Levels: Spiders as an Example. Ecosystems 21, 930–942 (2018). https://doi.org/10.1007/s10021-017-0194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0194-0

Keywords

Navigation