, Volume 21, Issue 3, pp 567–581 | Cite as

Spatial Variability of Plant Litter Decomposition in Stream Networks: from Litter Bags to Watersheds

  • Alan Mosele Tonin
  • Luiz Ubiratan Hepp
  • José Francisco GonçalvesJr.


The decomposition of plant litter plays a fundamental role in the cycling of carbon and nutrients and is driven by complex interactions of biological and physical controls, yet little is known about its variability and controls across spatial scales. Here we address the indirect effects of riparian canopy cover on litter decomposition and decomposers and their variability within a set of hierarchical scales (watershed, stream segments and reaches) controlling for confounding factors that could co-vary with canopy cover (for example, temperature and nutrients), in high-altitude subtropical streams. Total, microbial and invertebrate-driven decomposition rates were approximately 1.4–6.6 times higher in closed-canopy than in open-canopy watersheds. Riparian canopy cover accounted for 62–69% of total variability of decomposition rates and indirectly (via light availability and litter inputs) promoted fungal facilitation of shredders through leaf litter conditioning. In contrast to what we expected, much of the spatial variability in the decomposition occurred at smaller scale (4–20% of total variability among reaches versus <1% among watersheds) and coincided with the greatest variability in shredder abundance and fungal biomass (70 and 17% among reaches, respectively). We conclude that riparian canopy cover may be an important control of natural variability of litter decomposition at the watershed scale through its effects on fungal decomposers and shredder consumption. We also provide evidence of higher reach and minor watershed variability of litter decomposition in stream networks. Our results point to the importance of identifying the sources of natural variability of decomposition and how they interact within and among spatial scales.


fungal biomass riparian vegetation invertebrate communities scraper shredder detritivores multiple scales 



We thank Manuel A.S. Graça, José R. Pujol Luz, Daniel von Schiller and Luz Boyero for their valuable comments on an early draft of this manuscript; Rafael C. Loureiro and Suéle F. Santolin for indispensable field and laboratory support; and DPP/UnB for financial support of the English review. AMT received a scholarship from CAPES; and LUH received financial support from CNPq (Process#471572/2012-8). We declare that the owners of the lands gave us permission to conduct the study on these sites.

Supplementary material

10021_2017_169_MOESM1_ESM.docx (944 kb)
Supplementary material 1 (DOCX 944 kb)


  1. Albariño R, Villanueva VD, Canhoto C. 2008. The effect of sunlight on leaf litter quality reduces growth of the shredder Klapopteryx kuscheli. Freshw Biol 53:1881–9.CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorol Z 22:711–28.CrossRefGoogle Scholar
  3. Behling H. 2002. South and southeast Brazilian grasslands during Late Quaternary times: A synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177:19–27.CrossRefGoogle Scholar
  4. Bond-Buckup G. 2010. Biodiversidade dos campos de Cima da Serra. Porto Alegre: Libretos. p 196p.Google Scholar
  5. Boyero L, Pearson RG, Dudgeon D, Ferreira V, Graça MAS, Gessner MO, Boulton AJ, Chauvet E, Yule CM, Albariño R, Ramirez A, Helson JE, Callisto M, Arunachalam M, Chará J, Figueroa R, Mathooko JM, Goncalves JFJ, Moretti MS, Chará-Serna A, Davies JN, Encalada AC, Lamothe S, Buria LM, Castela J, Cornejo A, Li AOY, M’Erimba C, Villanueva VD, Zúñiga MC, Swan CM, Barmuta LA. 2012. Global patterns of stream detritivore distribution: Implications for biodiversity loss in changing climates. Glob Ecol Biogeogr 21:134–41.CrossRefGoogle Scholar
  6. Boyero L, Pearson RG, Dudgeon D, Graça MAS, Gessner MO, Albariño R, Ferreira V, Yule CM, Boulton AJ, Arunachalam M, Callisto M, Chauvet E, Ramírez A, Chará J, Moretti MS, Gonçalves JFJ, Helson JE, Chará-Serna A, Encalada AC, Davies JN, Lamothe S, Cornejo A, Li AOY, Buria LM, Villanueva VD, Zúñiga MC, Pringle CM. 2011a. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92:1839–48.CrossRefPubMedGoogle Scholar
  7. Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albariño RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Ramírez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Goncalves JFJ, Moretti MS, Jinggut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC. 2011b. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–94.CrossRefPubMedGoogle Scholar
  8. Boyero L, Pearson RG, Swan CM, Hui C, Albariño RJ, Arunachalam M, Callisto M, Chará J, Chará-Serna AM, Chauvet E, Cornejo A, Dudgeon D, Encalada AC, Ferreira V, Gessner MO, Gonçalves JF, Graça MAS, Helson JE, Mathooko JM, McKie BG, Moretti MS, Yule CM. 2015. Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography 38:949–55.CrossRefGoogle Scholar
  9. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. 2004. Toward a metabolic theory of ecology. Ecology 85:1771–89.CrossRefGoogle Scholar
  10. Clarke A, Mac Nally R, Bond N, Lake PS. 2008. Macroinvertebrate diversity in headwater streams: A review. Freshw Biol 53:1707–21.CrossRefGoogle Scholar
  11. Cogo GB, Santos S. 2013. The role of aeglids in shredding organic matter in neotropical streams. J Crustac Biol 33:519–26.CrossRefGoogle Scholar
  12. Crowl TA, McDowell WH, Covich AP, Johnson SL. 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82:775–83.CrossRefGoogle Scholar
  13. Cummins KW, Merritt RW, Andrade PCN. 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40:69–89.CrossRefGoogle Scholar
  14. Daufresne T, Loreau M. 2001. Ecological stoichiometry, primary producer–decomposer interactions, and ecosystem persistence. Ecology 82:3069–82.Google Scholar
  15. Franken RJM, Waluto B, Peeters ETHM, Gardeniers JJP, Beijer JAJ, Scheffer M. 2005. Growth of shredders on leaf litter biofilms: The effect of light intensity. Freshw Biol 50:459–66.CrossRefGoogle Scholar
  16. Frissell C, Liss W, Warren C, Hurley M. 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environ Manag 10:199–214.CrossRefGoogle Scholar
  17. Gessner MO. 2005. Ergosterol as a measure of fungal biomass. In: Graca MAS, Bärlocher F, Gessner MO, Eds. Methods to study litter decomposition: A practical guide. Dordrecht: Springer. p 189–95.CrossRefGoogle Scholar
  18. Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hattenschwiler S. 2010. Diversity meets decomposition. Trends Ecol Evol 25:372–80.CrossRefPubMedGoogle Scholar
  19. Graça MA, Hyde K, Chauvet E. 2016. Aquatic hyphomycetes and litter decomposition in tropical–subtropical low order streams. Fungal Ecol 19:182–9.CrossRefGoogle Scholar
  20. Graça MAS. 2001. The role of invertebrates on leaf litter decomposition in streams—a review. Int Rev Hydrobiol 86:383–93.CrossRefGoogle Scholar
  21. Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L. 2015. A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol 100:1–12.CrossRefGoogle Scholar
  22. Guo F, Kainz MJ, Valdez D, Sheldon F, Bunn SE. 2016. High-quality algae attached to leaf litter boost invertebrate shredder growth. Freshw Sci 35:1213–21.CrossRefGoogle Scholar
  23. Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ET, Scheu S, Schmid B, van Ruijven J, Vos VC, Hattenschwiler S. 2014. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–21.CrossRefPubMedGoogle Scholar
  24. Heino J, Louhi P, Muotka T. 2004. Identifying the scales of variability in stream macroinvertebrate abundance functional composition and assemblage structure. Freshw Biol 49:1230–9.CrossRefGoogle Scholar
  25. Heino J, Muotka T, Paavola R. 2003. Determinants of macroinvertebrate diversity in headwater streams: Regional and local influences. J Anim Ecol 72:425–34.CrossRefGoogle Scholar
  26. Hepp LU, Melo AS. 2013. Dissimilarity of stream insect assemblages: Effects of multiple scales and spatial distances. Hydrobiologia 703:239–46.CrossRefGoogle Scholar
  27. Hieber M, Gessner MO. 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–38.CrossRefGoogle Scholar
  28. Keiper JB, Foote BA. 2000. Biology and larval feeding habits of coexisting Hydroptilidae (Trichoptera) from a small woodland stream in northeastern Ohio. Ann Entomol Soc Am 93:225–34.CrossRefGoogle Scholar
  29. Kiffney P, Richardson JS, Bull J. 2003. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. J Appl Ecol 40:1060–76.CrossRefGoogle Scholar
  30. Kohler SD. 1984. Search mechanism of a stream grazer in patchy environments: The role of food abundance. Oecologia 62:209–18.CrossRefPubMedGoogle Scholar
  31. Kominoski JS, Marczak LB, Richardson JS. 2011. Riparian forest composition affects stream litter decomposition despite similar microbial and invertebrate communities. Ecology 92:151–9.CrossRefPubMedGoogle Scholar
  32. Kominoski JS, Pringle CM. 2009. Resource–consumer diversity: Testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshw Biol 54:1461–73.CrossRefGoogle Scholar
  33. Lagrue C, Kominoski JS, Danger M, Baudoin J-M, Lamothe S, Lambrigot D, Lecerf A. 2011. Experimental shading alters leaf litter breakdown in streams of contrasting riparian canopy cover. Freshw Biol 56:2059–69.CrossRefGoogle Scholar
  34. Lau DCP, Leung KMY, Dudgeon D. 2009. Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? J N Am Benthol Soc 28:426–39.CrossRefGoogle Scholar
  35. Leberfinger K, Bohman I, Herrmann J. 2011. The importance of terrestrial resource subsidies for shredders in open-canopy streams revealed by stable isotope analysis. Freshw Biol 56:470–80.CrossRefGoogle Scholar
  36. Leberfinger K, Herrmann J. 2010. Secondary production of invertebrate shredders in open-canopy, intermittent streams on the island of Öland, southeastern Sweden. J N Am Benthol Soc 29:934–44.CrossRefGoogle Scholar
  37. Lecerf A, Richardson JS. 2010. Litter decomposition can detect effects of high and moderate levels of forest disturbance on stream condition. For Ecol Manag 259:2433–43.CrossRefGoogle Scholar
  38. Ledger M, Hildrew AG. 1998. Temporal and spatial variation in the epilithic biofilm of an acid stream. Freshw Biol 40:655–70.CrossRefGoogle Scholar
  39. Ligeiro R, Melo AS, Callisto M. 2010. Spatial scale and the diversity of macroinvertebrates in a neotropical catchment. Freshw Biol 55:424–35.CrossRefGoogle Scholar
  40. Lisboa LK, da Silva ALL, Siegloch AE, Júnior JFG, Petrucio MM. 2015. Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Mar Freshw Res 66:674–80.CrossRefGoogle Scholar
  41. Lock MA, Wallace RR, Costerton JW, Ventullo RM, Charlton SE. 1984. River epilithon: Toward a structural-functional model. Oikos 42:10–22.CrossRefGoogle Scholar
  42. Logan M. 2010. Nested ANOVA. In: Logan M, Ed. Biostatistical design and analysis using R: A practical guide. Oxford: Wiley.CrossRefGoogle Scholar
  43. Menninger HL, Palmer MA. 2007. Herbs and grasses as an allochthonous resource in open-canopy headwater streams. Freshw Biol 52:1689–99.CrossRefGoogle Scholar
  44. Milesi SV, Melo AS. 2014. Conditional effects of aquatic insects of small tributaries on mainstream assemblages: Position within drainage network matters. Can J Fish Aquat Sci 71:1–9.CrossRefGoogle Scholar
  45. Mugnai R, Nessimian JL, Baptista DF. 2010. Manual de identificação de Macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Techinal Books.Google Scholar
  46. Neres-Lima V, Brito EF, Krsulović FAM, Detweiler AM, Hershey AE, Moulton TP. 2016. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. Int Rev Hydrobiol 101:132–42.CrossRefGoogle Scholar
  47. Newsham KK, McLeod AR, Roberts JD, Greenslade PD, Emmet BA. 1997. Direct effect of elevated UV-B radiation on the decomposition of Quercus robur leaf litter. Oikos 79:592–602.CrossRefGoogle Scholar
  48. Oliveira-Filho AT, Budke JC, Jarenkow JA, Eisenlohr PV, Neves DRM. 2015. Delving into the variations in tree species composition and richness across South American subtropical Atlantic and Pampean forests. J Plant Ecol 8:1–23.CrossRefGoogle Scholar
  49. Oliveira-Filho AT, Jarenkow JA, Rodal MJN. 2006. Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In: Pennington RT, Lewis GP, Ratter JA, Eds. Neotropical savannas and dry forests: Plant diversity, biogeography and conservation. Boca Raton: Taylor & Francis. p 11–51.Google Scholar
  50. Perez J, Descals E, Pozo J. 2012. Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain). Microb Ecol 64:279–90.CrossRefPubMedGoogle Scholar
  51. Pes AMO, Hamada N, Nessimian JL. 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Revista Brasileira de Entomologia 49:181–204.CrossRefGoogle Scholar
  52. Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RDC. 2013. nlme: Linear and Nonlinear Mixed Effects Models. R package.Google Scholar
  53. Pozo J, González E, Díez J, Molinero J, Elósegui A. 1997. Inputs of particulate organic matter to streams with different riparian vegetation. J N Am Benthol Soc 16:602–11.CrossRefGoogle Scholar
  54. R Core Team. 2013. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  55. Rezende RS, Petrucio MM, Gonçalves JF Jr. 2014. The effects of spatial scale on breakdown of leaves in a tropical watershed. PLoS One 9:e97072.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Robinson CT, Gessner MO. 2000. Leaf breakdown in an alpine spring brook. Verhandlungen der Internationalen Vereinigung fur theoretische und angewandte Limnologie 27:744–7.Google Scholar
  57. Robinson CT, Gessner MO, Ward JV. 1998. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw Biol 40:215–28.CrossRefGoogle Scholar
  58. Rounick JS, Winterbourn MJ. 1983. The formation, structure and utilization of stone surface organic layers in two New Zealand streams. Freshw Biol 13:57–72.CrossRefGoogle Scholar
  59. Royer TV, Minshall GW. 2003. Control on Leaf processing in streams from spacial-scaling and hierarchical perspectives. J N Am Benthol Soc 22:352–8.CrossRefGoogle Scholar
  60. Schmera D, Erós T, Greenwood MT. 2007. Spatial organization of a shredder guild of caddisflies (Trichoptera) in a riffle—searching for the effect of competition. Limnologica 37:129–36.CrossRefGoogle Scholar
  61. Schneck F, Schwarzbold A, Melo AS. 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. J N Am Benthol Soc 30:1049–56.CrossRefGoogle Scholar
  62. Tiegs SD, Akinwole PO, Gessner MO. 2009. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161:343–51.CrossRefPubMedGoogle Scholar
  63. Tonello G, Naziloski LA, Tonin AM, Restello RM, Hepp LU. 2016. Effect of Phylloicus on leaf breakdown in a subtropical stream. Limnetica 35:243–52.Google Scholar
  64. Tonin AM, Hepp LU, Restello RM, Gonçalves JF Jr. 2014. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740:79–88.CrossRefGoogle Scholar
  65. Vaughn CC. 1986. The role of periphyton abundance and quality in the microdistribution of a stream grazer, Helicopsyche borealis, (Trichoptera, Helicopsychidae). Freshw Biol 16:485–93.CrossRefGoogle Scholar
  66. Wiens JA. 1989. Spatial scale in ecology. Funct Ecol 3:385–97.CrossRefGoogle Scholar
  67. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie BG, Tiegs SD, Cariss H, Dobson M, Elosegi A, Ferreira V, Graca MA, Fleituch T, Lacoursiere JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LB, Chauvet E. 2012. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–40.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Limnology Lab, Ecology Department, Institute of Biological SciencesUniversity of BrasiliaBrasiliaBrazil
  2. 2.Biomonitoring Lab, Biological Sciences DepartmentUniversity Regional Integrada do Alto Uruguai e das MissõesErechimBrazil

Personalised recommendations